Validation report for the international validation study on ROS (Reactive Oxygen Species) assay as a test evaluating phototoxic potential of chemicals (Atlas Suntest version)

Conducted by: ROS assay Validation Management Team

This version of the validation report was prepared for peer review.

Revisions made after a peer review panel meeting held from 27 February to 2 March are shown in blue.

Revisions made after the ICH Brussels meeting and a peer review panel telephone conference on 17 June are shown in green.

Revisions made after a peer review panel meeting held on 21 and 22 August are shown in violet.

Table of contents

	Background	
	Objective of the study	
3.	Test Method	1
	3-1. ROS assay	1
	3-2. Sunlight simulator	2
4.	Validation Management Structure	2
	4-1. Validation Management Team	2
	4-2. Chemical selection, acquisition, coding and distribution	3
	4-3. Independent biostatistician	
	4-4. Participating laboratory	4
5.	Study Design	
	Test Chemicals.	
	6-1. Chemical selection	
	6-1-1. Chemicals for the Phase 1 study	5
	6-1-2. Chemicals for the Phase 2 study	
	6-2. Chemical coding, distribution and disclosure of code	
7.	Protocols	
	7-1. Prediction model of photoreactivity	
	7-2. Protocol of ROS assay	
	7-2-1. Apparatus	
	7-2-2. Preparation of test chemicals and controls.	
	7-2-3. ROS assay procedure	
	7-3. Data collection, handling, and criteria	
	7-3-1. Data collection.	
	7-3-2. Data handling	
	7-3-3. Criteria for data acceptance and judgement	
	7-4. Quality assurance	
8	Results.	
Ο.	8-1. Phase 1 study	
	8-1-1. Within- and between laboratory variation assessments in the Phase 1 study	
	8-1-2. Results and judgements in the Phase 1 study	
	8-1-3. Contingency tables in the Phase 1 study	
	8-2. Phase 2 study	
	8-2-1. Irradiance and temperature during the irradiation	
	8-2-2. Within- and between laboratory variation for Phase 2 study	
	8-2-3. Results and judgements in the Phase 2 study	
	8-2-4. Contingency tables in the Phase 2 study	
	8-3. Combined results of Phase 1 and Phase 2.	
	8-3-1. Results and judgements for Phase 1 and 2 combined results	
	8-3-2. Contingency tables for Phase 1 and 2 combined results	
	8-4. Contingency tables for integrated judgement results	
	8-5. Secondary data analysis after receiving the comments from the peer review	. 20
	committee	20
	8-5-1. Secondary data analysis based on the criteria for the proposed protocol: Results	. 20
		22
	and judgements of Phase 2 study	. 22
	8-5-2. Secondary data analysis based on the criteria for the proposed	22
	protocol: Contingency tables of Phase 2 study results	. 22
	8-6. Third data analysis after reconsidering the negative results at 20μM	. 22
	8-6-1. Third data analysis based on the criteria for the proposed protocol: Results	22
	and judgements of Phase 2 study	. 23
	8-6-2. Third data analysis based on the criteria for the proposed protocol:	2.4
	Contingency tables of Phase 2 study results	. 24
	8-7. Fourth data analysis after reconsidering negative results at 20µM	. 24
	8-7-1. Fourth data analysis based on the criteria for the proposed protocol: Results	~ -
	and judgements of Phase 2 study	25

8-7-2.	Fourth data analysis based on the criteria for the proposed protocol:
٥ - ٦٠	Contingency tables of Phase 2 study results
	ion
	iability
	ween-laboratory reproducibility
	dictivity
	mance standards
	sion28
12. Referei	nces29
	List of Figure and Tables
T. 4	
Figure 1	Spectral patterns of the light sources and standard daylight
Figure 2	Management structure of the ROS assay validation study
Table 1-1	List of rationale for chemical selection in Phase 1 study
Table 1-1	
Table 1-2	Test chemicals for the Phase 1 study List of rational for chemical selection in Phase 2 study
Table 2-1	· · · · · · · · · · · · · · · · · · ·
Table 2-2	Test chemicals for the Phase 2 study and code list
	Within-laboratory variation of Phase 1 study
Table 4	Between-laboratory variation of Phase 1 study
Table 5	Results of the ROS assay multi-center variation Phase 1 study
Table 6A	Judgement from the Phase 1 results: Final judgement of positive when positive
Table (D	results were obtained in at least one of three assays
Table 6B	Judgement from the Phase 1 results: Final judgement based on the mean value of
T.11. 60	three assays
Table 6C	Judgement from the Phase 1 results: Final judgement based on the majority of
T-1-1- (D	three assay results
Table 6D	Judgement from the Phase 1 results: Final judgement based on the first assay results
T-1-1-7A	
Table 7A	Contingency table for the Phase 1 results at 20 µM: Final judgement of positive
T-1-1- 7D	when positive results were obtained in at least one of three assays
Table 7B	Contingency table for the Phase 1 results at 20 µM: Final judgement based on the
Table 7C	mean value of three assays Contingency table for the Phase 1 results at 20 uM . Final independent based on
Table 7C	Contingency table for the Phase 1 results at 20 µM : Final judgement based on
T.1.1. 7D	the majority of three assay results
Table 7D	Contingency table for the Phase 1 results at 20 µM: Final judgement based on the
T-1-1- 7E	first assay results
Table 7E	Contingency table for the Phase 1 results at 200 µM: The final judgements were
T.1.1. 0	the same in all of the analysis methods
Table 8	Irradiance and temperature during the irradiation in the Phase 2 study
Table 9	Intra-laboratory variation of Phase 2 study
Table 10	Inter-laboratory variation of Phase 2 study
Table 11	Results of the ROS assay multi-center validation Phase 2 study
Table 12A	Judgement from the Phase 2 results: Final judgement of positive when positive
T 11 10D	results were obtained in at least one of three assays
Table 12B	Judgement from the Phase 2 results: Final judgement based on the mean value of
T.11 10C	three assays
Table 12C	Judgement from the Phase 2 results: Final judgement based on the majority of
T 11 10	three assay results
Table 12D	Judgement from the Phase 2 results: Final judgement based on the first assay
T.1.1 12 4	results.
Table 13A	Contingency table for Phase 2 results: Final judgement of positive when positive results were obtained in at least one of three assays

- Table 13B Contingency table for Phase 2 results: Final judgement based on the mean value of three assays
- Table 13C Contingency table for Phase 2 results: Final judgement based on the majority of three assay results.
- Table 13D Contingency table for Phase 2 results: Final judgement based on the first assay results
- Table 14A Judgement from the Phase 1 and 2 results: Final judgement of positive when positive results were obtained in at least one of three assays
- Table 14B Judgement from the Phase 1 and 2 results: Final judgement based on the mean value of three assays
- Table 14C Judgement from the Phase 1 and 2 results: Final judgement based on the majority of three assay results
- Table 14D Judgement from the Phase 1 and 2 results: Final judgement based on the first assay results
- Table 15A Contingency table for Phase 1 and 2 results: Final judgement of positive when positive results were obtained in at least one of three assays
- Table 15B Contingency table for Phase 1 and 2 results: Final judgement based on the mean value of three assays
- Table 15C Contingency table for Phase 1 and 2 results: Final judgement based on the majority of three assay results
- Table 15D Contingency table for Phase 1 and 2 results: Final judgement based on the first assay results
- Table 16-1 Contingency table for Phase 1 results at 20 μ M
- Table 16-2 Contingency table for Phase 1 results at 200 μM
- Table 16-3 Contingency table for Phase 2 results
- Table 16-4 Contingency table for Phase 1 and 2 results
- Table 17 Contingency table for integrated judgement results
- Table 18A Secondary data analysis based on the criteria for the proposed protocol: The highest criteria among the three assay results was selected as the final judgement
- Table 18B Secondary data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the mean value of three assays
- Table 18C Secondary data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the majority of three assay results
- Table 18D Secondary data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the first assay results.
- Table 19A Secondary data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: The highest criteria among the three assay results was selected as the final judgement
- Table 19B Secondary data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 result: Final judgement based on the mean value of three assays
- Table 19C Secondary data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: Final judgement based on the majority of three assay results.
- Table 19D Secondary data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: Final judgement based on the first assay results
- Table 20 Secondary data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results.
- Table 21 Secondary data analysis based on the criteria for the proposed protocol: Contingency table for integrated judgement results.
- Table 22 Results of newly conducted ROS assay at 20 µM and the Phase 2 results of Lab 1
- Table 23A Third data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: The highest criteria among the three assay results was selected as the final judgement

- Table 23B Third data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the mean value of three assays
- Table 23C Third data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the majority of three assay results
- Table 23D Third data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the first assay results.
- Table 24A Third data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: The highest criteria among the three assay results was selected as the final judgement
- Table 24B Third data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 result: Final judgement based on the mean value of three assays
- Table 24C Third data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: Final judgement based on the majority of three assay results.
- Table 24D Third data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: Final judgement based on the first assay results
- Table 25 Third data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results.
- Table 26 Third data analysis based on the criteria for the proposed protocol: Contingency table for integrated judgement results.
- Table 27A Fourth data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: The highest criteria among the three assay results was selected as the final judgement
- Table 27B Fourth data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the mean value of three assays
- Table 27C Fourth data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the majority of three assay results
- Table 27D Fourth data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the single assay results.
- Table 28A Fourth data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: The highest criteria among the three assay results was selected as the final judgement
- Table 28B Fourth data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 result: Final judgement based on the mean value of three assays
- Table 28C Fourth data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: Final judgement based on the majority of three assay results.
- Table 28D Fourth data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: Final judgement based on the single assay results.
- Table 29 Fourth data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results.
- Table 30 Fourth data analysis based on the criteria for the proposed protocol: Contingency table for integrated judgement results.

List of Appendixes

- Appendix 1 Chemical structures of the test chemicals for the Phase 1 study
- Appendix 2 Chemical structures of the test chemicals for the Phase 2 study
- Appendix 3 Positive control and negative control data of Phase 1 study
- Appendix 4 Individual data of Phase 1 study
- Appendix 5 Irradiance and temperature during the irradiation in the Phase 2 study
- Appendix 6 Positive control and negative control data of Phase 2 study
- Appendix 7 Individual data of Phase 2 study
- Appendix 8 UV spectrum of test chemicals

Appendix 9 Preparation information and appearance of the stock solutions and the reaction mixtures

List of Attachments

Attachment 1 Protocol for Phase 1 study

INTERNATIONAL VALIDATION STUDY ON ROS (REACTIVE OXIDATIVE SPECIES) ASSAY AS A TEST EVALUATING

PHOTOTOXIC POTENTIAL OF CHEMICALS (VERSION 1.0)

Attachment 2 Protocol for Phase 2 study

INTERNATIONAL VALIDATION STUDY ON ROS (REACTIVE OXIDATIVE SPECIES) ASSAY AS A TEST EVALUATING PHOTOTOXIC POTENTIAL OF CHEMICALS (ATLAS VERSION

3.02)

1. Background

The use of a reactive oxygen species (ROS) assay to detect chemicals with phototoxicity potential is expected to conform to the ICH framework.

The aim of this study was to validate the ROS assay method for between-laboratory variability and transferability in order to incorporate this assay for photoreactivity testing of drug candidates into an ICH framework. The ROS assay multi-study validation trials were undertaken in accordance with:

- i. the principles and criteria documented in the OECD No. 34 guidance document on the validation and international acceptance of new or updated test methods for hazard assessment [OECD, 2005],
- ii. the modular approach to validation [Hartung et al., 2004], and
- iii. discussions on multi-study validation trials with participation of good laboratory practice (GLP) test facilities [Cooper-Hannan et al., 1999] where the whole concept of multi-study validation trials was described in the context of GLP.

The studies part of multi-study trials should ideally be performed in accordance with GLP and should include but not necessarily be limited to the use of standard operating procedures (SOP) as well as adequate data recording, reporting, and record keeping.

A general conceptual framework [Hartung et al., 2004; OECD, 2005] was used for documenting the entire validation of a test method, which is called a modular approach to validation. In this approach, the information needed to support the validity of the method is organized into modules that provide the following information:

Module 1: Test definition

Module 2: Within-laboratory repeatability and reproducibility

Module 3: Between-laboratory transferability

Module 4: Between-laboratory reproducibility

Module 5: Predictive capacity

Module 6: Applicability domain

Module 7: Performance standards

The modular approach as introduced by Hartung et al., allows the use of datasets from various sources and studies, and we took advantage of this approach in assessing the scientific validity of the ROS assay.

2. Objective of the study

The multi-study validation trial assessed the reliability (reproducibility within and between laboratories) and relevance (predictive capacity) of the ROS assay with a challenging set of test chemicals for which high quality in vivo data are available.

3. Test Method 3-1. ROS assay

The ROS assay was developed by Onoue et al. [2008a] and is a high-throughput and high-performance system for predicting the phototoxic potential of pharmaceutical substances. This assay is a multiwell plate-based study using a quartz reaction container, the advantages of which include reduced sample volumes, improved assay productivity, and highly-uniform irradiation.

In this study, the generation of ROS, including superoxide and singlet oxygen was detected by spectrophotometric measurement. Singlet oxygen was measured by monitoring the bleaching of p-nitrosodimethyl aniline (RNO) at 440 nm using imidazole as a selective acceptor of singlet oxygen. Two hundred microliters of samples containing the test chemical, RNO, and imidazole were transferred to the wells of a plastic 96-well plate before light exposure. The plate was subjected to measurement of absorbance at 440 nm using a

microplate spectrophotometer. The plate was then fixed in the quartz reaction container with a quartz cover and irradiated with simulated sunlight for 1 hour. After agitation on a plate shaker, UV absorbance at 440 nm was measured. Superoxide was measured by irradiating samples containing the test chemical and nitroblue tetrazolium (NBT) with simulated sunlight for 1 hour, and then measuring the reduction in NBT by observing the increase in absorbance at 560 nm in the same manner as the singlet oxygen determination.

3-2. Sunlight simulator

An Atlas Suntest CPS series (CPS plus or CPS; Atlas Material Technology LLC, Chicago, IL, USA) equipped with a 1500-W xenon arc lamp was used for solar simulator. The irradiation test was carried out at 25°C with an irradiance of ca. 2.0 mW/cm² as determined using a calibrated UVA detector (Dr Hönle 0037, München, Germany).

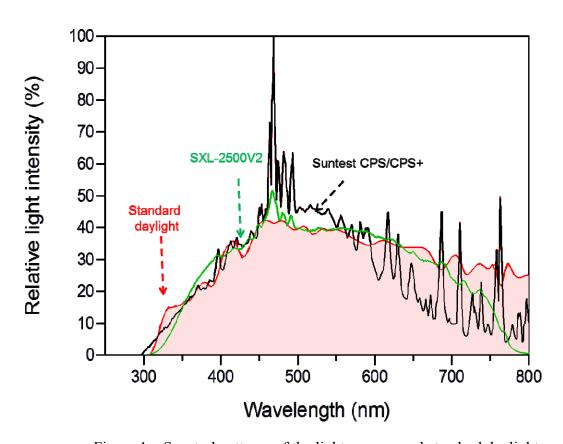


Figure 1 Spectral patterns of the light sources and standard daylight

4. Validation Management Structure

This validation study was performed by the Japanese Center for the Validation of Alternative Methods (JaCVAM). The management structure is shown in Figure 1.

4-1. Validation Management Team

The validation management team (VMT) comprised individuals with the collective expertise in the underlying science to perform the scientific design, management, and evaluation of this study. The VMT played a central role in overseeing the validation study, including:

- 1) Goal statement
- 2) Project plan including objective
- 3) Study protocol/amendments

- 4) Outcome of QC audits
- 5) Test chemicals
- 6) Data management procedures
- 7) Timeline/study progression
- 8) Study interpretation and conclusions
- 9) Reports and publication

Final determination of which laboratories would participate in the validation study was the responsibility of the VMT.

Members:

Hajime Kojima; JaCVAM, VMT chairperson

Kazuhiro Hosoi; Santen Pharmaceutical Co., Ltd., VMT co-chair

Satomi Onoue; University of Shizuoka, Lead laboratory

Kazuichi Nakamura; Shionogi & Co., Ltd.

Tsuguto Toda; Shionogi & Co., Ltd.

Yasuhiro Matsumoto; ASKA Pharmaceutical Co., Ltd.

Manfred Liebsch; German Centre for the Documentation and Validation of Alternative Methods (ZEBET)

Hironori Takagi; Taisho Pharmaceutical Co., Ltd.

Naoto Osaki; Taisho Pharmaceutical Co., Ltd.

Satoru Kawakami; Asahi Kasei Pharma Co.

Valerie Zang; ECVAM Warren Casey; ICCVAM

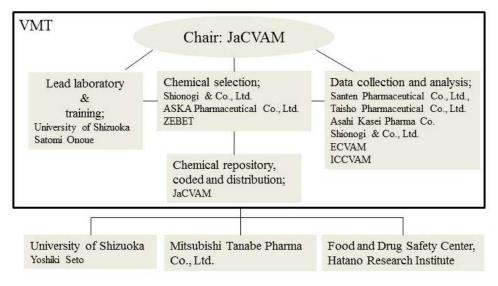


Figure 2 Management structure of the ROS assay validation study

4-2. Chemical selection, acquisition, coding and distribution

- 1) Definition of selection criteria
- 2) Chemical selection

Members:

Tsuguto Toda; Shionogi & Co., Ltd.

Yasuhiro Matsumoto; ASKA Pharmaceutical Co., Ltd.

Manfred Liebsch; ZEBET

(1) Liaise with suppliers

- (2) Final check of chemicals provided
- (3) Acquisition
- (4) Coding
- (5) Distribution

Member:

Hajime Kojima; JaCVAM

4-3. Independent biostatistician

- 1) Approve spreadsheets
- 2) Data collection
- 3) Data analysis

Members:

Kazuhiro Hosoi; Santen Pharmaceutical Co., Ltd. Naoto Osaki; Taisho Pharmaceutical Co., Ltd. Satoru Kawakami; Asahi Kasei Pharma Co. Kazuichi Nakamura; Shionogi & Co., Ltd. Hironori Takagi; Taisho Pharmaceutical Co., Ltd.

Valerie Zang; ECVAM Warren Casey; ICCVAM

4-4. Participating laboratory

The laboratories participating in the study were defined as shown in Figure 1.

The following three laboratories participated in the validation study for the evaluation of the ROS assays:

Laboratory 1: University of Shizuoka (Yoshiki Seto)

Laboratory 2: Food and Drug Safety Center, Hatano Research Institute (Shinobu Wakuri)

Laboratory 3: Mitsubishi Tanabe Pharma Co. (Toshinobu Yamamoto)

Although both the lead laboratory (Satomi Onoue) and Laboratory 1 (Yoshiki Seto) are located at the University of Shizuoka, Laboratory 1 participated in this validation study independently of the lead laboratory.

Each laboratory also was responsible for complying with GLP and specifying QA aspects.

5. Study Design

Before validation studies, a training course using Atlas Suntest CPS series was performed by the lead laboratory in March 2011. All technicians at each laboratory participated in this training course, which used quinine as a positive control and sulisobenzone as a negative control. After the training course, the two phases of the validation study were performed. In the Phase 1 study, within-laboratory repeatability and reproducibility were assessed using 11 new chemicals (5-fluorouracil, 8-methoxy psoralen, amiodarone, chlorpromazine, diclofenac, doxycycline, furosemide, ketoprofen, levofloxacin, norfloxacin, and omeprazole), the positive control, and the negative control (Table 1). These tests were conducted between April and May 2011 at three laboratories.

In the Phase 2 study, between-laboratory reproducibility and predictivity were assessed using 42 coded chemicals, the positive control, and the negative control (Table 2). This study was conducted between August and October 2011 at the three laboratories which had participated in both the training course and the Phase 1 study.

6. Test Chemicals

6-1. Chemical selection

6-1-1. Chemicals for the Phase 1 study

Chemicals selected for the Phase 1 study are listed in Table 1-1 and 1-2. Twelve phototoxic chemicals and one non-phototoxic chemical were used. Chemicals for the Phase 1 study were not coded.

Quinine (No. I-12) was selected as the positive control and sulisobenzone (No. I-13) was selected as the negative control in the ROS assay according to the method of Onoue et al. [2008a]. Quinine HCl was classified as a phototoxic chemical for human per an article by Ljunggren et al [1986]. Sulisobenzone was classified as a non-phototoxic chemical, because human data on this chemical was described as negative per an article on the in vitro 3T3 neutral red uptake phototoxicity test (3T3NRU-PT) validation study [Spielmann et al, 1998b].

5-fluorouracil (5-FU, No. I-1) was reportedly a phototoxic chemical in humans [Dillaha et al., 1983], but it was negative in the 3T3NRU-PT [Kleinman et al., 2010 and Onoue et al., 2010]. Reported causes of human phototoxicity in 5-FU include photocytotoxicity induced by UV-B alone [Kirkup M.E. et al., 2003 and Andersen K.E. et al., 1984] and/or ROS generation derived from UV-B induced photodegradation [Miolo G. et al., 2011]. 5-FU absorbs mainly UV-B (290–320 nm) within the range of natural sunlight (Appendix 7), UV-B irradiation might be essential for photochemical activation of 5-FU. Therefore it was unknown whether 5-FU was a phototoxic chemical, and high quality human data was not available. 5-FU was selected in order to provide information on the limits of the ROS assay.

The remaining 10 chemicals (Nos. I-2, I-3, I-4, I-5, I-6, I-7, I-8, I-9, I-10 and I-11) were selected from typical phototoxic chemicals.

8-MOP (No. I-2), amiodarone HCl (No. I-3), chlorpromazine (No. I-4), doxycycline HCl (No. I-6), furosemide (No. I-7), ketoprofen (No. I-8) and norfloxacin (No. I-10) were selected from the list of phototoxic chemicals used in the 3T3NRU-PT validation study. Human data describing these chemicals as positive were given in the article on the 3T3NRU-PT validation study [Spielmann et al, 1994a and 1998a].

Diclofenac (No. I-5), levofloxacin (No. I-9) and omeprazole (No. I-11) were selected as phototoxic chemicals in humans per an article of Przybilla et al [1987], Boccumini et al [2000], and Dam et al [2008], respectively.

6-1-2. Chemicals for the Phase 2 study

Chemicals selected for the Phase 2 study are listed in Table 2-1 and 2-2. An equal number of phototoxic and non-phototoxic chemicals were selected (approximately 1:1). Chemicals for the Phase 2 study were coded.

1) Phototoxic chemicals

Twenty-three positive chemicals (18 drugs and 5 non-drug chemicals) were selected based on the results in human and 3T3 NRU-PT.

Twenty-one chemicals (Nos. II-1, II-2, II-3, II-4, II-5, II-6, II-7, II-8, II-9, II-10, II-11, II-12, II-13, II-14, II-15, II-16, II-18, II-19, II-21, II-22 and II-23) of 23 positive chemicals were selected from the list of positive chemicals used in the 3T3NRU-PT validation study. Human data describing these chemicals as phototoxic were given in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1994a and 1998a].

Acridine (No. II-1) and acridine HCl (No. II-2) or nalidixic acid (II-11) and nalidixic acid (Na salt) (II-12) were tested both as a free form and a salt respectively in order to test whether the aqueous solubility of chemicals might limit the predictive power of the ROS

assay.

Rosiglitazone (No. II-17) was selected because 3T3 NRU-PT was positive, although high quality human data regarding phototoxicity was not available. After the secondary data analysis on the Phase 2 study results, the VMT decided to exclude rosiglitazone from the third data analysis. The VMT considered it inappropriate to include rosiglitazone in the phototoxic chemical set, due to lack of high quality human data regarding its phototoxicity.

Avobenzone was reported as negative for photoallergy by a photopatch test in the article by Szczurko C et al. [1994] and Trevisi P et al. [1994], but was reported to induce photoallergic reactions in the article by Schauder, S. et al. [1997]. Therefore, avobenzone was classified as a phototoxic chemical, because we were not able to completely judge that avobenzone was a non-phototoxic chemical.

2) Non-phototoxic chemicals

Nineteen negative chemicals (5 drugs and 14 non-drug chemicals) were selected mainly based on the negative results of 3T3 NRU-PT, because clinical information was not available for many chemicals.

We searched for human data for these chemicals but could not find reliable human phototoxicity data.

Five chemicals (Nos. II-27, II-31, II-34, II-40 and II-41) were selected from the list of negative chemicals used in the 3T3 NRU-PT validation study [Spielmann et al, 1994a and 1998a]. Negative results in human and animals were described for chlorhexidine (No. II-31) and PABA (II-40) respectively in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1998a].

Seven chemicals (Nos. II-29, II-33, II-35, II-36, II-38, II-39 and II-42) were selected from UV absorbers. Three (Nos. II-35, II-38 and II-39) of them were in the list of negative chemicals in the 3T3 NRU-PT validation study and human data of these chemicals were described as negative in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1998b]. We thought that human data for four UV absorbers (Nos. II-29, II-33, II-36 and II-42) would be provided. Human data, however, were not available for these chemicals. Therefore, after confirming negative results in 3T3 NRU-PT, these chemicals were classified as non-phototoxic chemicals.

Four chemicals (Nos. II-24, II-25, II-26 and II-28) were selected based on negative results in the 3T3 NRU-PT per the article by Onoue et al. [2010].

We originally intended to use cinnamic aldehyde, an aromatic ingredient used in cinnamon, as Chemical No. II-32, because this chemical used in the 3T3 NRU-PT validation study. However, we inadvertently added cinnamic acid instead of cinnamic aldehyde to the list of chemicals. Cinnamic acid is known to form a dimer by light irradiation when in the solid state. The difference between cinnamic aldehyde and cinnamic acid is that the former has a side chain of aldehyde and the later one of carboxyl. In addition, we carried out 3T3NRU-PT for cinnamic acid and the result was negative, just like cinnamic aldehyde. Therefore, we concluded that either chemical was suitable for the ROS assay validation study, because cinnamic acid resembles cinnamic aldehyde structurally, and the result of 3T3 NRU-PT testing was the same.

Chemical No. II-30 and II-37 were registered at first as benzylindene camphor sulphonic acid and octyl methoxycinnamate, respectively. These were UV absorbers used in the 3T3 NRU-PT validation study. However, we carried out the Phase 2 study without noticing a transcription error in the CAS number on the final chemical list. Because we did not notice this mistake until after the Phase 2 study, these chemicals were reclassified as non-phototoxic chemicals after confirming negative results in 3T3 NRU-PT and low molar extinction coefficient (MEC).

6-2. Chemical coding, distribution and disclosure of code

Coding and distribution of chemicals were performed by JaCVAM. The coded chemicals were sent to the safety officer, who is not involved in the experiments, together with a sealed envelope containing the material safety data sheets (MSDS). Since the chemicals were coded, the laboratories did not know their identity and therefore all chemicals were treated as hazardous chemicals. The disclosure of codes was performed at a VMT meeting on 11 October, 2011, after the data had been finalized per QC confirmation.

Table 1-1 List of reasons for chemical selection

Table		
NO.	Compound	Reasons for chemical selection
		5-FU was reportedly a phototoxic chemical in humans [Dillaha et al., 1983], but it
		was negative in the 3T3NRU-PT [Kleinman et al., 2010 and Onoue et al., 2010].
		Reported causes of human phototoxicity in 5-FU include photocytotoxicity induced
		by UV-B alone [Kirkup M.E. et al., 2003 and Andersen K.E. et al., 1984] and/or
		ROS generation derived from UV-B induced photodegradation [Miolo G. et al., 2011]. 5-FU absorbs mainly UV-B (290–320 nm) within the range of natural
		sunlight (Appendix 6), UV-B irradiation might be essential for photochemical
		activation of 5-FU. Therefore it was unknown whether 5-FU was a phototoxic
		chemical, and high quality human data was not available. 5-FU was selected in
		order to provide information on the limits of the ROS assay. Photosensitivity was
I-1	5-Fluorouracil (5-FU)	mentioned on both the US and the JPN label.
		8-MOP was selected from the list of phototoxic chemicals used in the 3T3NRU-PT
		validation study. Human data for this chemical was described as positive in the
	0.14	article on the 3T3 NRU-PT validation study [Spielmann et al, 1994a].
I-2	8-Methoxy psoralen (8-MOP)	Photosensitivity was mentioned on both the US and the JPN label.
		Amiodarone HCl was selected from the list of phototoxic chemicals used in the 3T3NRU-PT validation study. Human data for this chemical was described as
		positive in the article on the 3T3 NRU-PT validation study [Spielmann et al,
I-3	Amiodarone HCl	1994a]. Photosensitivity was mentioned on both the US and the JPN label.
-	-	Chlorpromazine HCl was selected from the list of phototoxic chemicals used in the
		3T3NRU-PT validation study. Human data for this chemical was described as
		positive in the article on the 3T3 NRU-PT validation study [Spielmann et al,
I-4	Chlorpromazine HCl	1994a]. Photosensitivity was mentioned on both the US and the JPN label.
		Diclofenac was selected as a phototoxic chemical for human per the article by
1.5	Diclofenac	Przybilla et al [1987]. Photosensitivity was mentioned on both the US and the
I-5	Diciolenac	JPN label. Doxycycline HCl was selected from the list of phototoxic chemicals used in the
		3T3NRU-PT validation study. Human data for this chemical was described as
		positive in the article on the 3T3 NRU-PT validation study [Spielmann et al,
I-6	Doxycycline HCl	1994a]. Photosensitivity was mentioned on both the US and the JPN label.
		Furosemide was selected from the list of phototoxic chemicals used in the
		3T3NRU-PT validation study. Human data for this chemical was described as
		positive in the article on the 3T3 NRU-PT validation study [Spielmann et al,
1.7	Furosemide	1998a]. Although the 2011 US label did mention photosensitivity, 2012 US label
I-7	ruioseinide	did not. Photosensitivity was mentioned on the JPN label. Ketoprofen was selected from the list of phototoxic chemicals used in the
		3T3NRU-PT validation study. Human data for this chemical was described as
		positive in the article on the 3T3 NRU-PT validation study [Spielmann et al,
I-8	Ketoprofen	1998a]. Photosensitivity was mentioned on both the US and the JPN label.
		Levofloxacin was selected as a phototoxicity positive chemical for human per the
T 0		article by Boccumini et al [2000]. Photosensitivity was mentioned on both the US
I-9	Levofloxacin	and the JPN label.
		Norfloxacin was selected from the list of phototoxic chemicals used in the 3T3NRU-PT validation study. Human data for this chemical was described as
		positive in the article on the 3T3 NRU-PT validation study [Spielmann et al,
I-10	Norfloxacin	1998a]. Photosensitivity was mentioned on both the US and the JPN label.
		Omeprazole was selected as a phototoxic chemical for human per to the article by
		Dam et al [2008]. Photosensitivity was mentioned on both the US and the JPN
I-11	Omeprazole	label.
		Quinine HCl was used as positive control according to the method of Onoue et al.
		[2008a]. Quinine HCl was classified as a phototoxic chemical for human per the
I-12	Quinine HCl	article by Ljunggren et al [1986]. There was a mention of the photosensitivity in the US label.
1-14	Quinino 1101	Sulizobenzone was used as negative control according to the method of Onoue et
		al. [2008a]. Sulisobenzone was classified as a non-phototoxic chemical, because
		Human data for this chemical was described as negative in the article on the 3T3
I-13	Sulisobenzone	NRU-PT validation study [Spielmann et al, 1998b].

Table 1-2 Test chemicals for the Phase 1 study

	Chemical name		UV/vis absorption b)		ROS	3T3	in vivo	
No.		CAS No. ^{a)}	MEC (L/mol/cm)	λmax (nm)	assay	NRU	Animal	Human
I-1	5-FU	51-21-8	1800 ^{c)}	290 ^{d)}	- 1)	- 2,3)	NA	+? 4)
I-2	8-MOP	298-81-7	3631	300	+ 1)	+ 5)	+ 5)	+ 5)
I-3	Amiodarone HCl	19774-82-4	5400	290 d)	+ 3)	+ 5)	+ 5)	+ 5)
I-4	Chlorpromazine HCl	69-09-0	1746	304	+ 1)	+ 5)	+ 5)	+ 5)
I-5	Diclofenac	15307-79-6	7800 ^{c)}	290 d)	+ 1)	+ 3)	+ 6)	+ 7)
I-6	Doxycycline HCl	10592-13-9	3715	290 d)	+ 1)	+ 5)	+ 5)	+ 5)
I-7	Furosemide	54-31-9	2650	290 d)	+ 1)	+/- 3,8,9)	NA	+ 8)
I-8	Ketoprofen	22071-15-4	2092	290 d)	+ 1)	+ 8)	- 8)	+ 8)
I-9	Levofloxacin	100986-85-4	13000 ^{c)}	333	+ 10)	+ 10)	+ 11)	+ 12)
I-10	Norfloxacin	70458-96-7	3562	323	+ 1)	+ 3)	+ 8)	+ 8)
I-11	Omeprazole	73590-58-6	15000 ^{c)}	301	+ 1)	+/- 3)	NA	+ 13)
I-12	Quinine HCl	6119-47-7	1938	330	+ 1)	+ 3)	+ 6)	+ 14)
I-13	Sulisobenzone	4065-45-6	3519	290 d)	- 1)	- 3)	NA	- 15)

⁵⁻FU: 5-fluorouracil, 8-MOP: 8-methoxy psoralen

^{+:} Positive, -: Negative, +/-: Equivocal, NA: Not available, ?: unclear

a) CAS No.: Chemical abstracts service registry number, b) The UV/vis absorbance (290-700 nm) of chemicals was measured in 20 mM phosphate buffer (pH 7.4). Test chemicals were dissolved in dimethylsulfoxide (DMSO) at 10 mM and diluted with 20 mM phosphate buffer (pH 7.4). Final concentration of DMSO was unified to 0.5%. c) Molar extinction coefficient (MEC) of 5-FU, diclofenac, levofloxacin, and omeprazole were extracted from the articles of Onoue et al. (2008a) and Seto et al. (2011).

d) λ max (nm) was a wavelength at which the UV/vis absorbance shows a peak between 290 and 700 nm. λ max (nm) was indicated as 290 nm in the case where the peak absorption is located below 290 nm and the maximum absorption is at 290 nm

¹⁾ Onoue et al., 2008a, 2) Kleinman et al., 2010, 3) Onoue et al., 2010, 4) Dillaha et al., 1983, 5) Spielmann et al., 1994a, 6) Spielmann et al., 1994b, 7) Przybilla et al., 1987, 8) Spielmann et al., 1998a, 9) Peters et al., 2002, 10) Seto et al., 2011, 11) Wagai et al., 1992, 12) Boccumini et al., 2000, 13) Dam et al., 2008, 14) Ljunggren et al., 1986, 15) Spielmann et al., 1998b

Table 2-1 List of reasons for chemical selection

Table	2 i Eist of i cusons	for chemical selection
NO.	Chemical name	Reasons for chemical selection
Photo	toxic drugs	
II-1	Acridine	Acridine was selected from the list of positive chemicals used in the 3T3 NRU-PT validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1998a]. Acridine (No. II-1) and acridine HCl (No. II-2) were tested both as a free form and a salt in order to test whether the aqueous solubility of chemicals might limit the predictive power of the ROS assay. Acridine HCl was selected from the list of positive chemicals used in the 3T3 NRU-PT
II-2	Acridine HCl	validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1998a]. Acridine (No. II-1) and acridine HCl (No. II-2) were tested both as a free form and a salt in order to test whether the aqueous solubility of chemicals might limit the predictive power of the ROS assay.
II-3	Amiodarone HCl	Amiodarone HCl was selected from the list of positive chemicals used in the 3T3 NRU-PT validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1994a]. Photosensitivity was mentioned on both the US and the JPN label.
II-4	Chlorpromazine HCl	Chlorpromazine HCl was selected from the list of positive chemicals used in the 3T3 NRU-PT validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1994a]. Photosensitivity was mentioned on both the US and the JPN label.
II-5	Doxycycline HCl	Doxycycline HCl was selected from the list of positive chemicals used in the 3T3 NRU-PT validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1994a]. Photosensitivity was mentioned on both the US and the JPN label. Fenofibrate was selected from the list of positive chemicals used in the 3T3 NRU-PT
II-6	Fenofibrate	validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1998a]. Although the 2011 US label did mention photosensitivity, 2012 US label did not. Photosensitivity was mentioned on the JPN label.
II-7	Furosemide	Furosemide was selected from the list of positive chemicals used in the 3T3 NRU-PT validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1998a]. Although the 2011 US label did mention photosensitivity, 2012 US label did not. Photosensitivity was mentioned on the JPN label.
II-8	Ketoprofen	Ketoprofen was selected from the list of positive chemicals used in the 3T3 NRU-PT validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1998a]. Photosensitivity was mentioned on both the US and the JPN label. 6-Methylcoumarine was selected from the list of positive chemicals used in the 3T3
II-9	6-Methylcoumarine	NRU-PT validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1998a].
II-10	8-MOP	8-MOP was selected from the list of positive chemicals used in the 3T3 NRU-PT validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1994a]. Photosensitivity was mentioned on both the US and the JPN label.
II-11	Nalidixic acid	Nalidixic acid was selected from the list of positive chemicals used in the 3T3 NRU-PT validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1998a]. Nalidixic acid (II-11) and nalidixic acid (Na salt) (II-12) were tested both as a free form and a salt in order to test whether the aqueous solubility of chemicals might limit the predictive power of the ROS assay. Photosensitivity was mentioned on both the US and the JPN label.
II-12	Nalidixic acid (Na salt)	Nalidixic acid (Na salt) was selected from the list of positive chemicals used in the 3T3 NRU-PT validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1998a]. Nalidixic acid (II-11) and nalidixic acid (Na salt) (II-12) were tested both as a free form and a salt in order to test whether the aqueous solubility of chemicals might limit the predictive power of the ROS assay. Photosensitivity was mentioned on both the US and the JPN label.

		Norfloxacin was selected from the list of positive chemicals used in the 3T3 NRU-PT				
н 12	Neglection	validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1998a]. Photosensitivity was				
II-13	Norfloxacin	mentioned on both the US and the JPN label. Ofloxacin was selected from the list of positive chemicals used in the 3T3 NRU-PT				
II-14	validation study. Human data for this chemical was described as positive in the the 3T3 NRU-PT validation study [Spielmann et al, 1998a]. Photosensitivity					
		Piroxicam was selected from the list of positive chemicals used in the 3T3 NRU-PT				
II-15	validation study. Human data for this chemical was described as positive in the artithe 3T3 NRU-PT validation study [Spielmann et al, 1994a]. Photosensitivity was mentioned on both the US and the JPN label.					
		Promethazine HCl was selected from the list of positive chemicals used in the 3T3				
II-16	Promethazine HCl	NRU-PT validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1994a]. Photosensitivity was mentioned on both the US and the JPN label.				
II-17	Rosiglitazone	Rosiglitazone was selected because 3T3 NRU-PT was positive, but high quality human data regarding phototoxicity was not available.				
		Tetracycline was selected from the list of positive chemicals used in the 3T3 NRU-PT				
		validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1994a]. Photosensitivity was				
II-18	Tetracycline	mentioned on both the US and the JPN label.				
Photos	toxic non-drug chemicals					
1.10101	and and an and continuous	Anthracene was selected from the list of positive chemicals used in the 3T3 NRU-PT				
II 10	A wathern a are a	validation study. Human data for this chemical was described as positive in the article on				
II-19	Anthracene	the 3T3 NRU-PT validation study [Spielmann et al, 1998a]. Avobenzone was reported with photoallergy negative by a photopatch test in the article				
		by Szczurko C et al. [1994] and Trevisi P et al. [1994], but was reported to induce				
		photoallergic reactions in the article by Schauder, S. et al. [1997]. Therefore,				
II-20	Avobenzone	avobenzone was classified as a phototoxic chemical because we were not able to completely judge that avobenzone was a non-phototoxic chemical.				
11 20	7 TV OOCHZONC	Bithionol was selected from the list of positive chemicals used in the 3T3 NRU-PT				
		validation study. Human data for this chemical was described as positive in the article on				
II-21	Bithionol	the 3T3 NRU-PT validation study [Spielmann et al, 1994a]. Hexachlorophene was selected from the list of positive chemicals used in the 3T3				
		NRU-PT validation study. Human data for this chemical was described as positive in the article on the 3T3 NRU-PT validation study [Masuda et al., 1971 and Spielmann et al,				
II-22	Hexachlorophene	1998a].				
		Rose bengal was selected from the list of positive chemicals used in the 3T3 NRU-PT validation study. Human data for this chemical was described as positive in the article on				
II-23	Rose bengal	the 3T3 NRU-PT validation study [Spielmann et al, 1998a].				
Non-n	hototoxic drugs					
Tion p	lototoxic urugs	Aspirin was selected based on negative results of the 3T3 NRU-PT per the article by				
II-24	Aspirin	Onoue et al. [2010]. Photosensitivity was not mentioned on either the US or the JPN label.				
		Benzocaine was selected based on negative results of the 3T3 NRU-PT per the article by				
II-25	Benzocaine	Onoue et al. [2010]. Photosensitivity was not mentioned on either the US or the JPN label.				
11 23	2 STEE COUNTY	Erythromycin was selected based on negative results of the 3T3 NRU-PT per the article				
		by Onoue et al. [2010]. Photosensitivity was not mentioned on either the US or the				
II-26	Erythromycin	JPN label. Penicillin G was selected from the list of negative chemicals used in the 3T3 NRU-PT				
		validation study [Spielmann et al, 1994a]. Photosensitivity was not mentioned on				
II-27	II-27 Penicillin G either the US or the JPN label.					
		Phenytoin was selected based on negative results of the 3T3 NRU-PT per the article by				
II-28	Phenytoin	Onoue et al. [2010]. Photosensitivity was not mentioned on either the US or the JPN label.				
rvon-p	hototoxic non-drug chemicals	Bumetrizole was selected from UV absorbers. We thought that human data of this UV				
		absorber would be provided. Human data for this chemical, however, was not available. Therefore after confirming negative result in 3T3 NRU-PT, this chemical				
II-29	Bumetrizole	was classified as a non-phototoxic chemical.				

ı	1	
		Chemical No. II-30 was registered at first as benzylindene camphor sulphonic acid. This
		was a UV absorber used in the 3T3 NRU-PT validation study. However, we carried out the Phase 2 study without noticing a transcription error of the CAS number on the final
		chemical list. Because we did not notice this mistake until after the Phase 2 study, this
		chemical was reclassified as a non-phototoxic chemical after confirming negative results
II-30	Camphor sulfonic acid	in 3T3 NRU-PT and low molar extinction coefficient (MEC).
		Chlorhexidine was selected from the list of negative chemicals used in the 3T3 NRU-PT
II-31	Chlorhexidine	validation study [Spielmann et al, 1994a and 1998a]. Negative result in human was described in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1998a].
11-31	Ciliothexiume	We originally intended to use cinnamic aldehyde, an aromatic ingredient used in
		cinnamon, as Chemical No. II-32, because this chemical used in the 3T3 NRU-PT
		validation study. However, we inadvertently added cinnamic acid instead of cinnamic
		aldehyde to the list of chemicals. Cinnamic acid is known to form a dimer by light
		irradiation when in the solid state. The difference between cinnamic aldehyde and
		cinnamic acid is that the former has a side chain of aldehyde and the later one of carboxyl. In addition, we carried out 3T3NRU-PT for cinnamic acid and the result was
		negative, just like cinnamic aldehyde. Therefore, we concluded that either chemical
		was suitable for the ROS assay validation study, because cinnamic acid resembles
II-32	Cinnamic acid	cinnamic aldehyde structurally, and the result of 3T3 NRU-PT testing was the same.
		Drometrizole was selected from UV absorbers. We thought that human data of this UV
		absorber would be provided. Human data for this chemical, however, was not available. Therefore after confirming negative result in 3T3 NRU-PT, this chemical
II-33	Drometrizole	was classified as a non-phototoxic chemical.
11 33	Brometrizote	•
II-34	L-Histidine	L-Histidine was selected from the list of negative chemicals used in the 3T3 NRU-PT validation study [Spielmann et al, 1994a].
11-34	L Historia	Methylbenzylidene camphor was selected from UV absorbers. This was in the list of
		negative chemicals in the 3T3 NRU-PT validation study and Human data for this
	Methylbenzylidene	chemical was described as negative in the article on the 3T3 NRU-PT validation study
II-35	camphor	[Spielmann et al, 1998b].
		Octrizole was selected from UV absorbers. We thought that human data of this UV
		absorber would be provided. Human data for this chemical, however, was not available. Therefore after confirming negative result in 3T3 NRU-PT, this chemical
II-36	Octrizole	was classified as a non-phototoxic chemical.
11 50		Chemical No. II-37 was registered at first as octyl methoxycinnamate. This was UV
		absorber used in the 3T3 NRU-PT validation study. However, we have carried out the
		Phase 2 study without noticing a transcribing error of the CAS number when we made
		the final chemical list. Because we noticed to take it wrong after the Phase 2 study, this chemical was classified as non-phototoxic chemical again after confirming negative
II-37	Octyl methacrylate	result in 3T3 NRU-PT and low molar extinction coefficient (MEC).
11 57	octy i memacry rate	Octyl methoxycinnamate was selected from UV absorbers. This was in the list of
		negative chemicals in the 3T3 NRU-PT validation study and Human data for this
		chemical was described as negative in the article on the 3T3 NRU-PT validation study
II-38	Octyl methoxycinnamate	[Spielmann et al, 1998b].
		Octyl salicylate was selected from UV absorbers. This was in the list of negative chemicals in the 3T3 NRU-PT validation study and Human data for this chemical was
		described as negative in the article on the 3T3 NRU-PT validation study [Spielmann et
II-39	Octyl salicylate	al, 1998b].
		PABA was selected from the list of negative chemicals used in the 3T3 NRU-PT
II 40	DADA	validation study [Spielmann et al, 1994a and 1998a]. Negative result in animals was
II-40	PABA	described in the article on the 3T3 NRU-PT validation study [Spielmann et al, 1998a]. SDS was selected from the list of negative chemicals used in the 3T3 NRU-PT validation
II-41	SDS	study [Spielmann et al, 1994a].
	-	UV-571 was selected from UV absorbers. We thought that human data of this UV
		absorber would be provided. Human data for this chemical, however, was not
11.40	LIN 571	available. Therefore after confirming negative result in 3T3 NRU-PT, this chemical
II-42	UV-571	was classified as a non-phototoxic chemical.
Positiv	ve/Negative controls	
		Quinine HCl was used as positive control according to the method of Onoue et al.
PC	Quinine HCl	[2008a]. Quinine HCl was classified as a phototoxic chemical for human per the article by Ljunggren et al [1986]. Photosensitivity was mentioned on the US label.
10	Zumme Hei	Sulizobenzone was used as negative control according to the method of Onoue et al.
		[2008a]. Sulisobenzone was classified as a non-phototoxic chemical, because Human
		data for this chemical was described as negative in the article on the 3T3 NRU-PT
NC	Sulisobenzone	validation study [Spielmann et al, 1998b].

Table 2-2 Test chemicals for Phase 2 study and code list

N.T.	Chemical name	CACAT a)	UV/vis absorption ^{b)}		3Т3	in vivo		Laboratory		
No.		CAS No. ^{a)}	MEC (L/mol/cm)	λmax (nm)	NRU	Animal	Human	1	2	3
Photo	toxic drugs									
II-1	Acridine	260-94-6	2773	354	+ 1)	+ 1)	+ 1)	C-130	B-090	A-005
II-2	Acridine HCl	17784-47-3	2635	354	+ 1)	+ 1)	+ 1)	C-126	B-086	A-001
II-3	Amiodarone HCl	19774-82-4	5400	290 ^{c)}	+ 2)	+ 2)	+ 2)	C-127	B-087	A-002
II-4	Chlorpromazine HCl	69-09-0	1746	304	+ 2)	+ 2)	+ 2)	C-106	B-066	A-026
II-5	Doxycycline HCl	10592-13-9	3715	290 °)	+ 2)	+ 2)	+ 2)	C-116	B-076	A-036
II-6	Fenofibrate	49562-28-9	3514	290 ^{c)}	+ 1)	NA	+ 1)	C-139	B-054	A-014
II-7	Furosemide	54-31-9	2650	290 ^{c)}	+/- 1,3,4)	NA	+ 1)	C-141	B-056	A-016
II-8	Ketoprofen	22071-15-4	2092	290 ^{c)}	+ 1)	- 1)	+ 1)	C-128	B-088	A-003
II-9	6-Methylcoumarine	92-48-8	3219	290 ^{c)}	+ 1)	+ 1)	+ 1)	C-113	B-073	A-033
II-10	8-MOP	298-81-7	3631	300	+ 2)	+ 2)	+ 2)	C-131	B-091	A-006
II-11	Nalidixic acid	389-08-2	3192	331	+ 1)	+ 1)	+ 1)	C-137	B-052	A-012
II-12	Nalidixic acid (Na salt)	3374-05-8	3019	333	+ 1)	+ 1)	+ 1)	C-134	B-094	A-009
II-13	Norfloxacin	70458-96-7	3562	323	+ 3)	+ 1)	+ 1)	C-110	B-070	A-030
II-14	Ofloxacin	82419-36-1	8443	290 ^{c)}	+ 1)	+ 1)	+ 1)	C-112	B-072	A-032
II-15	Piroxicam	36322-90-4	3304	352	- 2)	- 2)	+ 2)	C-135	B-095	A-010
II-16	Promethazine HCl	58-33-3	1558	297	+ 2)	NA	+ 2)	C-101	B-061	A-021
II-17	Rosiglitazone	122320-73-4	1765	311	+ d)	NA	NA	C-117	B-077	A-037
II-18	Tetracycline	60-54-8	3842	290 ^{c)}	+ 2)	+ 2)	+ 2)	C-102	B-062	A-022
Photo	toxic non-drug chemi	cals								
II-19	Anthracene	120-12-7	2315	355	+ 1)	+ 1)	+ 1)	C-121	B-081	A-041
II-20	Avobenzone	70356-09-1	7686	354	+ 5)	- 6)	+ 7)	C-109	B-069	A-029
II-21	Bithionol	97-18-7	2462	321	+ 2)	+ 2)	+ 2)	C-115	B-075	A-035
II-22	Hexachlorophene	70-30-4	2431	300	- 1)	- 1)	+ 1,8)	C-107	B-067	A-027
II-23	Rose bengal	632-69-9	19269	549	+ 1)	- 1)	+ 1)	C-104	B-064	A-024
Non-p	hototoxic drugs	.								
II-24	Aspirin	50-78-2	80	290 ^{c)}	- 3)	NA	NA	C-140	B-055	A-015
II-25	Benzocaine	94-09-7	4273	290 ^{c)}	- 3)	NA	NA	C-114	B-074	A-034
II-26	Erythromycin	114-07-8	0	290 ^{c)}	- 3)	NA	NA	C-119	B-079	A-039
II-27	Penicillin G	113-98-4	0	290 ^{c)}	- 2)	NA	NA	C-118	B-078	A-038
II-28	Phenytoin	57-41-0	0	290 ^{c)}	- 3)	NA	NA	C-145	B-060	A-020

Table 2-2 Test chemicals for Phase 2 study and code list (continued)

	Chemical name	G1 G21 9)	UV/vis abso	rption ^{b)}	3T3 λmax NRU	in vivo		Labora	tory	
No.		CAS No.a)	MEC (L/mol/cm)	λmax (nm)		Animal	Human	1	2	3
Non-p	Non-phototoxic non-drug chemicals									
II-29	Bumetrizole	3896-11-5	3873	306	- ^{d)}	NA	NA	C-138	B-053	A-013
II-30	Camphor sulfonic acid	3144-16-9	0	290 ^{c)}	- ^{d)}	NA	NA	C-132	B-092	A-007
II-31	Chlorhexidine	55-56-1	1338	290 ^{c)}	- 1)	NA	- 1)	C-144	B-059	A-019
II-32	Cinnamic acid	140-10-3	3373	290°)	- ^{d)}	NA	NA	C-123	B-083	A-043
II-33	Drometrizole	2440-22-4	3946	295	- d)	NA	NA	C-129	B-089	A-004
II-34	L-Histidine	71-00-1	0	290 ^{c)}	- 2)	NA	NA	C-111	B-071	A-031
II-35	Methylbenzylidene camphor	36861-47-9	9200	304	- 9)	- 9)	- ⁹⁾	C-136	B-051	A-011
II-36	Octrizole	3147-75-9	3958	296	- ^{d)}	NA	NA	C-133	B-093	A-008
II-37	Octyl methacrylate	688-84-6	0	290 ^{c)}	- d)	NA	NA	C-105	B-065	A-025
II-38	Octyl methoxycinnamate	5466-77-3	3000	290 °)	- 9)	- 9)	- ⁹⁾	C-142	B-057	A-017
II-39	Octyl salicylate	118-60-5	1500	290 ^{c)}	- 9)	- ⁹⁾	- 9)	C-120	B-080	A-040
II-40	PABA	150-13-0	2404	290 ^{c)}	- 2)	- 1)	NA	C-124	B-084	A-044
II-41	SDS	151-21-3	0	290°)	- 2)	NA	NA	C-125	B-085	A-045
II-42	UV-571	125304-04-3	1900	290 ^{c)}	- d)	NA	NA	C-122	B-082	A-042
Positi	ve/Negative controls	•	•	•	•	•	•	•	•	•
PC	Quinine HCl	6119-47-7	1938	330	+ 3)	+ 10)	+ 11)	PC	PC	PC
NC	Sulisobenzone	4065-45-6	3519	290°)	- 3)	NA	- ⁹⁾	NC	NC	NC

8-MOP: 8-methoxy psoralen, PABA: p-aminobenzoic acid, SDS: sodium dodecyl sulfate

1) Spielmann et al., 1998a, 2) Spielmann et al., 1994a, 3) Onoue et al., 2010, 4) Peters et al., 2002, 5) Gaspar et al., 2012, 6) ZEBET in house data, 7) Schauder et al., 1997, 8) Masuda et al., 1971, 9) Spielmann et al., 1998b, 10) Spielmann et al., 1994b, 11) Ljunggren et al., 1986

7. Protocols

The detailed test protocols used in this study is described in Attachment 1 and 2.

7-1. Prediction model of photoreactivity

In the ROS assay, generation of singlet oxygen is detected by spectrophotometric measurement of p-nitrosodimethyl aniline (RNO) bleaching, followed by decreased absorbance of RNO at 440 nm. Although singlet oxygen does not react chemically with RNO, the RNO bleaching is a consequence of singlet oxygen capture by the imidazole ring, resulting in the formation of a trans-annular peroxide intermediate capable of inducing the bleaching of RNO as follows:

Singlet oxygen + Imidazole \rightarrow [Peroxide intermediate] \rightarrow Oxidized imidazole

^{+:} Positive, -: Negative, +/-: Equivocal, NA: Not available, PC: Positive control, NC: Negative control a) CAS No.: Chemical abstracts service registry number, b) The UV/vis absorbance (290-700 nm) of most chemicals was measured in 20 mM phosphate buffer (pH 7.4). However, the UV/vis absorbance of chemical Nos. II-19, II-20, II-29, II-33 and II-36 were measured in methanol, because these chemicals were not solved in 20 mM phosphate buffer (pH 7.4). In the each case, test chemicals were dissolved in DMSO at 10 mM and diluted with 20 mM phosphate buffer (pH 7.4) or methanol. Final concentration of DMSO was unified to 0.5%. c) λmax (nm) was a wavelength at which the UV/vis absorbance shows a peak between 290 and 700 nm. λmax (nm) was indicated as 290 nm in the case where the peak absorption is located below 290 nm and the maximum absorption is at 290 nm. d) In vitro phototoxicity was assessed by the 3T3 NRU PT in the participating laboratories, according to the OECD 432 guideline.

[Peroxide intermediate] + RNO \rightarrow RNO + Products

The generation of superoxide is detected by the reduction of nitroblue tetrazolium (NBT) by superoxide anion via a one-electron transfer reaction, yielding partially reduced (2 e) monoformazan (NBT⁺) as a stable intermediate. Thus, superoxide reduces NBT to NBT⁺, whose formation can be monitored spectrophotometrically at 560 nm.

Superoxide + NBT \rightarrow O₂ + NBT⁺

7-2. Protocol of ROS assay 7-2-1. Apparatus

In the present validation study, an Atlas Suntest CPS series (CPS plus or CPS; Atlas Material Technology LLC, Chicago, IL, USA) equipped with a 1500-W xenon arc lamp was used for solar simulator. The irradiation tests were carried out at 25°C with an irradiance of ca. 2.0 mW/cm² as determined using the calibrated UVA detector (Dr Hönle 0037, München, Germany) provided by the VMT. Quartz reaction containers for the ROS assay were manufactured by Ozawa Science (Aichi, Japan) and provided by the VMT.

7-2-2. Preparation of test chemicals and controls

The stock solutions were thawed just before use and used within the day. The coded test chemicals were dissolved in dimethylsulfoxide (DMSO) or 20 mM sodium phosphate buffer (NaPB, pH7.4) at concentrations of 0.1, 1, or 10 mM just before use under UV-cut illumination or shade. All preparations were protected from light. Detailed information on preparation of test chemicals is shown in Appendix 9. The stock solutions of quinine for positive control and sulisobenzone for negative control were prepared at 10 mM in DMSO and kept frozen in tubes for up to 1 month. According to a chromatographic analysis, these stock solutions were stable for at least 1 month under the storage condition.

7-2-3. ROS assay procedure

Singlet oxygen was measured in an aqueous solution by spectrophotometrically monitoring the bleaching of RNO at 440 nm using imidazole as a selective acceptor of singlet oxygen. Samples containing the tested chemical (2–200 μM), RNO (50 μM) and imidazole (50 μM) in 20 mM NaPB were mixed in a tube. Two hundred microliters of the sample were transferred to a well in a plastic 96-well plate (clear, non-treated, flat-bottom). The plate was subjected to measurement of absorbance at 440 nm using a microplate spectrophotometer. The plate was fixed in the quartz reaction container with a quartz cover, and then irradiated with simulated sunlight for 1 hour. After agitation on plate shaker, UV absorbance at 440 nm was measured. For the determination of superoxide, samples containing the test chemical (2–200 μM) and NBT (50 μM) in 20 mM NaPB were irradiated with the simulated sunlight for 1 hour, and the reduction in NBT was measured by the increase in absorbance at 560 nm in the same manner as the singlet oxygen determination.

7-3. Data collection, handling, and criteria

7-3-1. Data collection

In the Phase 1 study, experiments were performed in triplicate wells in three independent runs. As the final concentrations, $20 \,\mu\text{M}$ and $200 \,\mu\text{M}$ of test chemical solutions were subjected to the ROS assay. When questionable data (e.g. technical error) were obtained, each testing facility could perform an additional experiment using the questionable chemical(s) and the positive/negative control chemicals.

In the Phase 2 study, experiments were performed in triplicate wells in three independent runs. As the final concentrations, $200 \,\mu\text{M}$ of test chemical solutions were subjected to the

ROS assay. However, when precipitation could be observed at 200 μ M under the optical microscope at 100× before light exposure, additional experiments were performed at 20 μ M. Further experiments should be performed at 2 μ M when precipitation was still observed at 20 μ M. When precipitation was observed at 2 μ M in the reaction mixture, further experimentation was not performed. When questionable data (*e.g.* technical error) were obtained, each testing facility could perform an additional experiment using the questionable chemical(s) and the positive/negative chemicals.

7-3-2. Data handling

The study report and all raw data from this study were retained according to the protocol in each testing facility. All raw data and the results were submitted to the VMT for review.

7-3-3. Criteria for data acceptance and judgement

The acceptance criteria for a valid assay were:

- i. No precipitation of the test chemical in the reaction mixture before light exposure,
- ii. No missing data for the positive control, negative control, blanks, or chemicals; and
- iii. Net absorbance of 0.02–1.5 in the controls and the chemicals.
- iv. Positive control value at 200 µM (mean of 3 wells)

Singlet oxygen: 150 or more Superoxide anion: 200 or more

v. Negative control value at 200 µM (mean of 3 wells)

Singlet oxygen: less than 25 Superoxide anion: less than 20

According to the results (mean of triplicate determinations) of the ROS assay, the photoreactivity on each test chemical was judged to be:

- i. Positive with singlet oxygen value ($\Delta A_{440 \text{ nm}} \times 10^3$) of 25 or more and/or superoxide value ($\Delta A_{560 \text{ nm}} \times 10^3$) of 20 or more; or
- ii. Negative with singlet oxygen value of less than 25 and superoxide value of less than 20.

Every assay result was classified based on these judgement criteria. Final judgements about chemicals were performed on the following four draft criteria at each laboratory:

- A. Final judgement of positive when positive results were obtained in at least one of three assays.
- B. Final judgement based on the mean value of three assays.
- C. Final judgement based on the majority of three assay results.
- D. Final judgement based on the first assay results.

7-4. Quality assurance

Assays and quality assurance were carried out in the spirit of GLP. Two of three test facilities were GLP certified even though tests were not performed under GLP. The participating laboratories conducted the experiments in accordance with the protocol provided by the VMT. All raw data and data analysis sheets were pre-checked for quality in each laboratory and then reviewed by the VMT quality assurance group. The results accurately reflect the raw data.

8. Results

8-1. Phase 1 study

8-1-1. Within- and between laboratory variation assessments in the Phase 1 study

Results of within-laboratory variation, which comprise intra-day variation and inter-day variation of the positive and negative controls at Laboratories 1, 2, and 3 are shown in Table 3. Individual positive and negative control values are shown in Appendix 1. Parameters for intra-day variations were calculated based on results from the date on which the most assays were performed at each laboratory. Parameters for inter-day variations were calculated based on the results of an assay of the day. Intra-day variation and inter-day variation were evaluated using the coefficient of variation (CV) of the positive control as well as values for mean and standard deviation of the positive and negative controls at each laboratory. The CVs of the positive control at each laboratory were below 10%, and variations of each control value were sufficiently small to suggest good within-laboratory reproducibility.

Parameters for between-laboratory variations were calculated from the average values from all of the assay results for the positive and negative controls of each laboratory (Table 4). The CVs of positive control in the three laboratories were 12.2% (singlet oxygen) and 26.6% (superoxide anion). Negative control was shown to be inactive in all assays.

8-1-2. Results and judgements in the Phase 1 study

Results of the Phase 1 study were shown (Table 5 and Appendix 2). According to the results (mean values of triplicate determinations) of the ROS assay, the photoreactivity on each test chemical was judged to be

- i. Positive with singlet oxygen value ($\Delta A_{440 \text{ nm}} \times 10^3$) of 25 or more and/or superoxide value ($\Delta A_{560 \text{ nm}} \times 10^3$) of 20 or more or
- ii. Negative with singlet oxygen value of less than 25 and superoxide value of less than 20.

Although data for precipitation were not recorded, precipitations were observed for amiodarone.

In order to select criteria for final judgement in a recommendation protocol for the ROS assay, four different draft criteria for final judgements were used in this validation study.

Draft criteria A: Final judgement of positive when positive results were obtained in at least one of three assays (Table 6A).

Draft criteria B: Final judgement based on the mean value of three assays (Table 6B).

Draft criteria C: Final judgement based on the majority of three assay results (Table 6C).

Draft criteria D: Final judgement based on the first assay results (Table 6D).

As for the final judgements at 20 μ M, there was no inconsistency between the three laboratories under draft criteria A or B, but there was one inconsistency (furosemide) under draft criteria C or D. In addition, 8-MOP showed negative results for all laboratories at 20 μ M. However, there was no inconsistency in the final judgement between the three laboratories at 200 μ M.

8-1-3. Contingency tables in the Phase 1 study

Inconsistencies of final judgements were assessed using contingency tables at 20 μ M (Tables 7A to 7D) and at 200 μ M (Table 7E).

At a concentration of 20 μ M, sensitivities were 83.3% under draft criteria A or B and 75.0% or 83.3% under the draft criteria C and D at each laboratory. Although there was only one

non-phototoxic chemical, specificities were 100% under all criteria at all laboratories. Positive predictivities were also 100% under all criteria at all laboratories. Negative predictivities were 33.3% under criteria A or B and 25.0 or 33.3% under criteria C or D. Accuracies were 84.6% under criteria A or B and 76.9% or 84.6% under criteria C or D. At a concentration of 200 μ M, sensitivities were 91.7%, specificities and positive predictivities were 100%, negative predictivities were 50.0%, and accuracies were 92.3% at all laboratories regardless of criteria. A false negative result was obtained for one of 12 phototoxic chemicals (5-FU).

8-2. Phase 2 study

8-2-1. Irradiance and temperature during the irradiation

The irradiances and temperatures at the beginning and the end of each irradiation are shown in Table 8 and Appendix 3. Irradiance A was measured by each laboratory with its own UVA detector. Irradiance B was a standardized irradiance calculated using values obtained using the calibrated UVA detector (Dr. Hönle), which was transported to each laboratory and conversion factors for standardized irradiance were prepared. Irradiance in each laboratory (1.93 to 2.07 mW/cm²) were within the specified range of values, and there was no significant inconsistency between facilities. There was no apparent variation in either irradiance or temperature between the facilities.

8-2-2. Within- and between laboratory variation for Phase 2 study

Results of within-laboratory variation, which comprise intra-day variation and inter-day variation of the positive and negative controls at Laboratories 1, 2 and, 3, are shown in Table 9 and Appendix 4. Parameters for intra-day variations were calculated based on results from the date on which the most assays were performed at each laboratory. Parameters for inter-day variations were calculated based on the results of the first assay of the day. Intra-day variation and inter-day variation were evaluated using the CV of the positive control as well as values for mean and standard deviation of the positive and negative controls of each laboratory. The CVs of the positive control at each laboratory were below 10%, and variations of each control value were sufficiently small to suggest good within-laboratory reproducibility.

Parameters for between-laboratory variations were calculated from the average value from all of the assay results for the positive and negative controls of each facility (Table 10). The CVs of positive control in the three laboratories were 20.6% (singlet oxygen) and 20.1% (superoxide anion). Negative control was shown to be inactive in all assays.

8-2-3. Results and judgements in the Phase 2 study

The photochemical reactivities of 42 coded chemicals, comprising 23 known phototoxins and 19 non-phototoxic drugs/compounds, were assessed using the ROS assay at Laboratories 1, 2, and 3 (Table 11 and Appendix 5). Assessment of between 25 and 28 chemicals (60–67% of total) were made at a concentration of 200 μM, and that of between 14 and 17 chemicals had to be diluted to a final concentration of 2 or 20 μM due to limited solubility in aqueous media. In particular, assays of amiodarone HCl (No. II-3), anthracene (No. II-19), avobenzone (II-20), Octrizole(No. II-36) and UV-571(No. II-42) were available only at 2 μM in most laboratories. For rose bengal (No. II-23), only singlet oxygen could be measured, since the intense UV absorption at 560 nm interfered directly with determination of superoxide anion. All three participating laboratories found that all phototoxins demonstrated potent ability to generate singlet oxygen, superoxide, or both under UV-vis exposure at concentrations of 20 and 200 μM. Nalidixic acid (No. II-11) and its sodium salt (No. II-12) were selected to evaluate the influence of the free form and

Na salt form which may affect the solubility profile. The results of nalidixic acid and its Na salt were positive at 200 μ M in all assays, and the values for singlet oxygen and superoxide anion were similar in each laboratory. For some phototoxins, however, generation of ROS was negligible at 2 μ M. Similar photochemical reactivity was also seen for test chemicals that were non-phototoxic drugs/compounds, although some exhibited potent photoreactivity in a few laboratories.

Judgement criteria for positive, negative and inconclusive ROS assays are:

Positive: Singlet oxygen results \ge 25 or Superoxide anion results \ge 20 at 200, 20 or 2 μM

Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 μ M Inconclusive: The results do not meet the positive or negative criteria

Every ROS assay was classified based on these criteria, and final judgements were based on four draft criteria shown in Tables 12A to 12D. The draft criteria for the final judgement are followings:

- A. Final judgement of positive when positive results were obtained in at least one of three assays.
- B. Final judgement based on the mean value of three assays.
- C. Final judgement based on the majority of three assay results.
- D. Final judgement based on the first assay results.

Three chemicals at Laboratories 1 and 2 gave inconsistent results in the three independent repeat assays, as did one chemical at Laboratory 3.

Ten chemicals gave inconsistent final judgements between the laboratories for draft criteria A (chemical Nos. II-6, 19, 25, 26, 27, 31, 32, 36, 37, and 41), as did nine chemicals for draft criteria B and C (chemical Nos. 3, 6, 19, 27, 31, 32, 36, 37, and 41), and eight chemicals for draft criteria D (chemical Nos. 6, 19, 27, 31, 32, 36, 37, and 41).

8-2-4. Contingency tables in the Phase 2 study

Inconsistent final judgements were assessed using contingency tables in the Phase 2 study (Tables 13A to 13D).

Sensitivities and negative predictivities were 100% in each laboratory regardless of the four different criteria. Specificities were 33.3% to 81.8% under draft criteria A, 41.7% to 81.8% under draft criteria B and C, and 58.3% to 81.8% under draft criteria D. Positive predictivities were 74.2% to 91.7% under draft criteria A, 75.9% to 91.7% under draft criteria B and C, and 82.1% to 91.7% under draft criteria D. Accuracies were 77.1% to 93.9% under draft criteria A, 79.4% to 93.9% under draft criteria B and C, and 85.7% to 93.9% under draft criteria D. There were no false negatives. There were between two and seven false positives in 10 to 12 negative chemicals under draft criteria B or C, and between two and five false positives in 10 to 12 negative chemicals under draft criteria D.

8-3. Combined results of Phase 1 and Phase 2

8-3-1. Results and judgements for Phase 1 and 2 combined results

The results of four phototoxic chemicals ($200 \,\mu\text{M}$) evaluated only in the Phase 1 study were combined with the Phase 2 results (diclofenac, 5-FU, levofloxacin, omeprazole; Tables 14A to 14 D). The results and the final judgements of these four chemicals were consistent between the three laboratories.

8-3-2. Contingency tables for Phase 1 and 2 combined results

Inconsistencies of final judgements were assessed using contingency tables for the combined results (Tables 15A to 15D).

Sensitivities were 96.0% to 96.3% in each laboratory regardless of the four different criteria. Specificities were 33.3% to 81.8% under draft criteria A, 41.7% to 81.8% under draft criteria B and C, and 58.3% to 81.8% under draft criteria D. Variation in specificities was basically dependent on facility. Specificities were 33.3% to 58.3%, 36.4% to 60.0%, and 81.8% in Laboratories 1, 2 and 3, respectively. Positive predictivities were 76.5% to 92.6% under draft criteria A, 78.1% to 92.6% under draft criteria B and C, and 83.9% to 92.6% under the draft criteria D. Negative predictivities were 80.0% to 90.0% under draft criteria A, 83.3% to 90.0% under draft criteria B and C, and 85.7% to 90.0% under draft criteria D. Accuracies were 76.9% to 91.1% under draft criteria A, 79.0% to 91.9% under draft criteria B and C, and 84.6% to 91.9% under draft criteria D.

5-FU showed a false negative under all criteria, but no other chemicals showed false negatives under any criteria. There were between two and eight false positives in 11 or 12 negative chemicals under draft criteria A, between two and seven false positives in 10 to 12 negative chemicals under draft criteria B or C, and between two and five false positives in 10 to 12 negative chemicals under draft criteria D.

8-4. Contingency tables for integrated judgement results

Parameters in the contingency tables for the Phase 1 study (20 and 200 μ M), the Phase 2 study, and the combined results are shown in Tables 16-1 to 16-4. Integrated final judgements were based on a majority of laboratory judgements. Parameters in the contingency tables of integrated judgement results for the Phase 1 study (200 μ M), the Phase 2 study, and the combined results are shown in Table 17.

The parameters in Phase 1 at 200 μM were the same regardless of the draft criteria for judgement. For the Phase 2 and the combined results, whoever, specificities were lower than the other parameters, especially under draft criteria A. The other parameters showed no apparent inconsistency regardless of draft criteria, although some were slightly lower under draft criteria A and slightly higher under draft criteria D.

8-5. Secondary data analysis after receiving the comments from the peer review committee

After issuing the validation report, the peer reviewers reviewed the report in a meeting held from 27th February to 2nd March, 2013. Major comments from the peer reviewers are as follows:

- 1) It might have been better to limit data to just blind Phase 2 study. The basis for overall evaluation of sensitivity, specificity, positive and negative predictivity, and overall accuracy (performance criteria) should focus on this data. In this data set, 100% negative predictivity is highly encouraging, even though refers to chemicals that provided conclusive data. Re-examine whether the human data for 5-FU phototoxicity could be regarded as high quality human data or not.
- 2) The database could be enlarged by taking solubility into account and accepting negative results at 20 µM.
- 3) Low specificity of data is problematic. If possible, widen the borderline for the acceptance criteria based on validation study data. (from 20 to x for superoxide)

According to comment No. 1, the data re-analysis conducted below is focused on the Phase 2 study, which was conducted under blind conditions. The VMT members re-examined the

information on 5-FU phototoxicity in human. Upon re-examination, we concluded that it is unknown whether 5-FU was phototoxic or not, and high quality human data was not available (See Table 1-1.).

Regarding comment No. 2, accepting negative results at 20µM did not cause any false negatives in validation studies with Atlas Suntest CPS/CPS+ or Seric SXL2500-V2. Therefore the negative results at 20µM were included in the secondary data analysis.

Regarding comment No. 3, no false negatives were found after changing the borderline for superoxide anion from 20 to 70 in the validation study results using Atlas Suntest CPS/CPS+ or Seric SXL2500-V2. If we use a borderline of 25 for singlet oxygen and 70 for superoxide anion, then amlodipine, amoxapine, bufexamac, and haloperidol would all be below the borderline [Onoue et al., 2008a].

Chemicals with singlet oxygen values of less than 25 and superoxide anion values of between 20 and 70 are considered to be weakly photoreactive. New judgement criteria were established for the proposed protocol as follows:

Judgement criteria for the secondary data analysis

Each test chemical is to be classified as follows:

Judgement ¹⁾	Concentration	SO (mean of 3 v	vells)	SA (mean of 3 wells)	
Photoreactive	20 and/or 200 μM ²⁾	≥25 and		≥70	
		<25 and/or P ³⁾ and		≥70	
		≥25	and	<70 and/or P	
Weakly photoreactive	20 and 200 μM ²⁾	<25	and	≥20, <70	
Non-photoreactive	20 and 200 μM ²⁾	<25	and	<20	
Inconclusive	The results do not meet the above-mentioned criterion. ⁴⁾				

Notes

- 1) A single experiment is sufficient for classifying results, because the ROS assay shows good reproducibility in the validation studies.
- 2) Twenty μM can be used for judgement when precipitation or coloration is observed at 200 μM.
- 3) Precipitation before irradiation.
- 4) If precipitation, coloration, or other interference before irradiation is observed at both at 20 and $200 \mu M$, the chemical is considered incompatible with the ROS assay.

As described in the following sections, the Phase 2 study results were re-analyzed based the above criteria. Since the ROS assay is intended for screening photoreactivity during initial photosafety evaluation, it is preferable to minimize false negatives even at the cost of increased false positives. Although all chemicals that were classified as weakly photoreactive in the validation studies were non-phototoxic drugs or non-phototoxic non-drug chemicals, there are some drugs—such as amlodipine, amoxapine, bufexamac and haloperidol—which might show clinical photosensitivity despite being classified as weakly photoreactive [Onoue et al., 2008a]. Follow-up tests for non-clinical and/or clinical photosafety should be considered if a drug candidate is classified as weakly photoreactive. Therefore, in the secondary data analysis, we evaluated weakly photoreactive chemicals when defined as both non-phototoxic and phototoxic.

8-5-1. Secondary data analysis based on the criteria for the proposed protocol: Results and judgements of Phase 2 study

The results of the Phase 2 study were classified based on the criteria for secondary data analysis, and final judgements were based on four draft criteria as shown in Tables 18A to 18D. The draft criteria for the final judgement are as follows:

- A. The highest criteria among the three assay results was selected as the final judgement.
- B. Final judgement based on the mean value of three assays.
- C. Final judgement based on the majority of three assay results.
- D. Final judgement based on the first assay result.

For phototoxic chemicals which were evaluated at $20\mu M$ and $200\mu M$, all of the judgements, the final judgements, and the integrated judgements were photoreactive. For the non-phototoxic chemicals, two of three assay results for one non-drug chemical (No. II-37, Octyl methacrylate) were classified as photoreactive at Laboratory 1. Except for this sole case, all other non-phototoxic chemicals were classified as non-photoreactive or weakly photoreactive.

8-5-2. Secondary data analysis based on the criteria for the proposed protocol: Contingency tables of Phase 2 study results

Contingency tables are shown in Tables 19A to 19D. One to four phototoxic chemicals and one to five non-phototoxic chemicals were considered incompatible due to precipitation at $20\mu M$ and $200\mu M$. Sensitivity, specificity, positive predictivity, negative predictivity and accuracy of each laboratory based on the original criteria and the criteria for the proposed protocol are summarized in Table 20. Sensitivity, specificity, positive predictivity, negative predictivity and accuracy of the integrated judgements based on the original criteria and the criteria for the proposed protocol are summarized in Table 21.

8-6. Third data analysis after reconsidering the negative results at 20µM

After issuing a revised validation report with secondary data analysis, the VMT updated the validation studies and the peer review process at the ICH S10 Expert Working Group (EWG) during the ICH Brussels meeting, held on 3^{rd} June, 2013. After introduction of updated results stated in the Section 8-5 above, discussion at the EWG focused on the predictivity of the negative results at 20 μ M. Some EWG members also noticed that differences in precipitation between laboratories might lead to different test concentrations, which could result in false negatives without appropriate predictivity at 20 μ M. The VMT promised to obtain assay results for the test chemicals at 20 μ M.

After the ICH Brussels meeting, Lab 1 performed a new series of ROS assays at 20 μ M using the validation chemical set. The results of this new series of assays at 20 μ M and the Phase 2 assay results at 200 μ M are presented in Table 22. All phototoxic chemicals were classified photoreactive even at 20 μ M. The intensities of ROS generation, however, generally decreased at 20 μ M compared with the results at 200 μ M in the validation study. Therefore, we concluded that follow-up studies will be needed whenever negative results are seen only at 20 μ M.

Based on these results, there are at least two options for classifying negative results at $20\mu M$. One option is to establish a new judgement, such as "probably non-photoreactive." Another is to classify them as inconclusive. If "probably non-photoreactive" were to be adopted, the VMT could follow the suggestions from the peer review committee given in Section 8-5. An ICH S10 EWG member suggested that since negative ROS would not require any follow

up in the draft ICH S10 guideline, and the term "probably non-photoreactive" would suggest somewhat negative results, its adoption would require additional explanation in the S10 guideline, which might cause confusion after implementation. On the other hand, classifying negative results at $20\mu M$ as inconclusive would reduce the nominal applicability domain of ROS assay, even though the number of chemicals needing follow up after ROS assay would not change. After discussing these options, the VMT proposed that negative results at $20\mu M$ be classified as inconclusive. Therefore, judgement criteria for the proposed protocol would be as follows.

Judgement criteria for the third data analysis

Each test chemical will be classified as follows:

Judgement ¹⁾	Concentration	SO (mean of 3 wells)		SA (mean of 3 wells)					
Photoreactive	20 and/or 200 μM ²⁾	≥25	and/or	≥70					
Weakly photoreactive	20 and 200 μM ²⁾	<25	and	≥20, <70					
Non-photoreactive	20 and 200 μM ³⁾	<25	and	<20					
Inconclusive	The results do not meet the above-mentioned criterion. ⁴⁾								

Notes

- 1) A single experiment is sufficient for classifying results, because the ROS assay shows good reproducibility in the validation studies.
- 2) Twenty μM can be used for judgement when precipitation or coloration is observed at 200 μM.
- 3) Two concentration levels without precipitation would be needed to classify a chemical as non-photoreactive. If precipitation is observed at 200 μ M, the chemical is classified as inconclusive.
- 4) If precipitation, coloration, or other interference before irradiation is observed at both 20 and 200 μ M, the chemical is considered incompatible with the ROS assay.

Judgement as either photoreactive or weakly photoreactive would be a flag for follow-up assessment. Judgement as non-photoreactive would indicate a very low probability of phototoxicity.

8-6-1. Third data analysis based on the criteria for the proposed protocol: Results and judgements of Phase 2 study

The results of the Phase 2 study were classified based on the criteria in the proposed protocol, and final judgements were based on four draft criteria as shown in Tables 23A to 23D. The draft criteria for the final judgement are as follows:

- A. The highest criteria among the three assay results was selected as the final judgement.
- B. Final judgement based on the mean value of three assays.
- C. Final judgement based on the majority of three assay results.
- D. Final judgement based on the first assay result.

For phototoxic chemicals, the results of the third data analysis matched those of the second data analysis, and there were no differences in integrated judgement as shown in Tables 23A to 23D. For non-phototoxic chemicals, the integrated judgements were same in each table except penicillin G, chlorhexidine and cinnamic acid. Penicillin G was classified as weakly photoreactive according to Tables 23A, B, and C but as non-photoreactive according to Table 23A but as non-photoreactive according to Tables 23B, C, and D. Cinnamic acid was classified

as inconclusive according to Tables 23A but as weakly photoreactive according to Table 23B, C, and D.

8-6-2. Third data analysis based on the criteria for the proposed protocol: Contingency tables of Phase 2 study results

Contingency tables are shown in Tables 24A to 24D. One to four phototoxic chemicals and eight to nine non-phototoxic chemicals were considered incompatible due to precipitation at $20\mu M$ and $200\mu M$ or classified as inconclusive. Sensitivity, specificity, positive predictivity, negative predictivity and accuracy of each laboratory based on the original criteria and the criteria for the proposed protocol are summarized in Table 25. Sensitivity, specificity, positive predictivity, negative predictivity and accuracy of the integrated judgements based on the original criteria and the criteria for the proposed protocol are summarized in Table 26.

8-7. Fourth data analysis after reconsidering negative results at 20µM

Negative results at $20\mu M$ were discussed during the peer review meeting held on 21 and 22 August, 2013, in Japan. As stated in Section 8-6, false negatives were not observed at 20 μM in results obtained by Dr. Onoue after the Brussels meeting. The VMT, however, proposed that negative results at 20 μM be classified as inconclusive in order to avoid the risk of false negatives. On the other hand, in Phase 1 of the validation study, which is included in the validation reports, the 11 phototoxicants tested at 200 μM and 20 μM and of these, only 8-MOP was negative at 20 μM . There were no differences between test facilities in these results. The peer review panel recommended that assays at 20 μM be performed when the assay at 200 μM did not provide results due to precipitation, coloration or other interference. Since implementation of this sequential protocol would reduce the risk of false negatives, the VMT decided to follow this recommendation. So far, we have not found any chemicals that are phototoxic in humans but inconclusive at 200 μM and negative at 20 μM in the ROS assay.

Regarding the criteria for judgement as weakly photoreactive, of 18 chemicals that are non-phototoxic in vivo, three were weakly photoreactive in the ROS assay. Also, there are four other chemicals—amlodipine, amoxapine, bufexamac, and haloperidol—that could be considered weakly photoreactive based on existing ROS assay literature [Onoue et al., 2008a]. Photosensitivity is mentioned on amlodipine labels in Japan but not in the US. Photosensitivity is mentioned on amoxapine labels in the US not in Japan. Incidence of photosensitivity under clinical conditions was less than 0.1% for amlodipine according to a Japanese interview form and less than 1% for amoxapine http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=261006c8-3fd0-491b-b322-42beff6f9880. In terms of UV A and UV B absorption of bufexamac and haloperidol, their absorption peak wavelengths were shorter than the lower limit of UVB (290 nm). Their MEC values were 130 and 180 L/mol/cm at 290 nm[Onoue et al., 2008a]. In the ICH S10 photosafety draft guideline (Step 2 version, dated 15 November 2012), it is stated that absorption with a MEC less than 1000 L/mol/cm is not considered to result in a photosafety concern. These two compounds would not subject to photosafety evaluation including ROS assay. Therefore, phototoxicity of these four drugs is not very noticeable, and it seems that the adverse events which are possibly related to the phototoxic potential of these drugs are not common events.

Criteria for judgment

Each test chemical is to be judged as follows:

Judgment ^{1, 2}	Concentration ³	SO (mean of 3 wells)		SA (mean of 3 wells)		
Photoreactive	200 μΜ	≥25	and	≥70		
		<25 and/or I ⁴ and		≥70		
		≥25	and	<70 and/or I ⁴		
Weakly photoreactive	200 μΜ	<25	and	≥20, <70		
Non-photoreactive	200 μΜ	<25	and	<20		
Inconclusive	The results do not meet the above-mentioned criterion.					

Notes

- 1. A single experiment is sufficient for judging results, because the ROS assay shows good intraand inter-laboratory reproducibility in the validation studies.
- 2. If precipitation, coloration, or other interference is observed at both 20 and 200 μ M, the chemical is considered incompatible with the ROS assay and judged as inconclusive.
- 3. Twenty μM can be used for judgment when precipitation or coloration is observed at 200 μM . For regulatory purposes, the stability of the test chemical in the reaction mixture both before and after light exposure is to be confirmed when results at 20 μM are used for judgment as a non-photoreactive chemical for which no further phototoxicity testing is necessary.
- 4. Interference such as precipitation or coloration.

Judgement as photoreactive, weakly photoreactive, or inconclusive would be a flag for follow-up assessment. Judgement as non-photoreactive would indicate a very low probability of phototoxicity, with no further testing recommended.

8-7-1. Fourth data analysis based on the criteria for the proposed protocol: Results and judgements of Phase 2 study

The results of the Phase 2 study were classified based on the criteria in the proposed protocol, and final judgements were based on four draft criteria as shown in Tables 27A to 27D. The draft criteria for the final judgement are as follows:

- A. The highest criteria among the three assay results was selected as the final judgement.
- B. Final judgement based on the mean value of three assays.
- C. Final judgement based on the majority of three assay results.
- D. Final judgement based on one of three assay results. (For draft criteria D, the result of the first assay was used as one of three assay results.)

For phototoxic chemicals, the results of the fourth data analysis matched those of the second and third data analysis, and there were no differences in the integrated judgement as shown in Tables 27A to 27D. For non-phototoxic chemicals, the integrated judgements were the same in each table except penicillin G, chlorhexidine and cinnamic acid. Penicillin G was classified as weakly photoreactive according to Tables 27A, B, and C but as non-photoreactive by Table 27D. Chlorhexidine was classified as weakly photoreactive according to Tables 27B, C, and D. Cinnamic acid was classified as inconclusive according to Table 27A but as weakly photoreactive according to Table 27B, C, and D. In the third data analysis, eight (Table 23B, C and D) or nine (Tables 23A) out of 19 non-phototoxic chemicals were classified as

inconclusive, but in the fourth data analysis, only one out of 19 non-phototoxic chemicals was classified as inconclusive.

8-7-2. Fourth data analysis based on the criteria for the proposed protocol: Contingency tables of Phase 2 study results

Contingency tables are shown in Tables 28A to 28D. One to four phototoxic chemicals and two to five non-phototoxic chemicals were considered incompatible due to precipitation at $20~\mu M$ and $200~\mu M$ or classified as inconclusive. Sensitivity, specificity, positive predictivity, negative predictivity and accuracy of each laboratory based on the original criteria and the criteria for the proposed protocol are summarized in Table 29. Sensitivity, specificity, positive predictivity, negative predictivity and accuracy of the integrated judgements based on the original criteria and the criteria for the proposed protocol are summarized in Table 30.

9. Discussion 9-1. Reliability

Variability was assessed using quinine for a positive control and sulisobenzone for a negative control in the Phase 1 study. Within-laboratory variations were sufficiently small to suggest high repeatability and reproducibility. In addition, preliminary findings show good between-laboratory transferability.

Between-laboratory transferability was assessed using 12 positive and 1 negative chemical at 20 and 200 µM. All chemicals showed the same final judgements in all criteria and facilities at 200 µM. One chemical, however, showed different results at Laboratory 3 depending on the draft criteria for final judgement at 20 µM, which suggests that weak ROS generative chemicals could show obscure result at 20 µM. In addition, sensitivities were lower at 20 µM than 200 µM for all criteria at all laboratories. Thus, we decided to accept negative results only at 200 µM in the Phase 2 study, although we did accept positive results at any concentration. After the peer review panel meeting held from 27 Feburary to 2 March, 2013, the peer review panel recommended the inclusion of negative results at 20 µM and widening of the borderline, in order to reduce the number of inconclusive and false positives in the validation study results. Secondary data analysis was conducted for the results of the Phase 2 study, which was conducted under blind conditions. The secondary data analysis did not affect the reliability of the ROS assay. After the ICH Brussels meeting in 2013 and the peer review panel telephone conference on 17 June, 2013, Lab 1 performed a new series of ROS assays at 20 µM with the validation chemical set. All phototoxic chemicals were classified photoreactive even at 20 µM. The intensities of ROS generation, however, generally decreased at 20 µM compared with the results at 200 µM in the validation study. Therefore, we concluded that follow-up studies will be needed whenever negative results are seen only at 20µM. Based on these results, there are at least two options for classifying negative results at 20µM. One is to establish as new judgement, such as "probably non-photoreactive." Another is to classify them as inconclusive. If "probably non-photoreactive" were to be adopted, the VMT could follow the suggestions the peer review committee given in Section 8-5. An ICH S10 EWG member suggested that since negative ROS would not require any follow up in the draft ICH S10 guideline, and the term "probably non-photoreactive would suggest somewhat negative results, its adoption would require additional explanation in the S10 guideline, which might cause confusion after implementation. On the other hand, classifying negative results at 20µM as inconclusive would reduce the nominal applicability domain of ROS assay, even though the number of chemicals needing follow up after ROS assay would not change.

discussing these options, the VMT proposed that negative results at $20\mu M$ be classified as inconclusive.

The results of the third data analysis reduced the potential risk for false positives from the secondary data analysis even though the number of inconclusives was not improved from the original data analysis. Therefore, the third data analysis did not affect the reliability of the ROS assay.

9-2. Between-laboratory reproducibility

The Phase 2 study was conducted with 42 coded test chemicals and 2 control chemicals, and the third data analysis was performed on the results of 41 chemicals, excluding rosiglitazone. As shown in Table 29, defining the weakly photoreactive chemicals as non-phototoxic chemicals resulted in a sensitivity of 100%, a specificity of 81.3% to 100%, a positive predictivity of 87.5% to 100%, a negative predictivity of 100%, and an accuracy of 91.9% to 100%, based on the criteria for the proposed protocol. In contrast, defining weakly photoreactive chemicals as phototoxic chemicals resulted in a sensitivity of 100%, a specificity of 56.3% to 88.2%, a positive predictivity of 75.0% to 90.9%, a negative predictivity of 100%, and an accuracy of 81.1% to 94.6%. Specificities exhibited some fluctuation between laboratories. Seven non-phototoxic drugs/compounds were judged to be negative in all criteria at Laboratory 3 but were each judged differently depending on criteria at Laboratories 1 and 2, resulting in high specificity at Laboratory 3 and lower specificity at Laboratories 1 and 2 in all decision criteria. Values for the positive control were somewhat higher at Laboratories 1 and 2 than at Laboratory 3, suggesting that conditions were more conducive to ROS generation at Laboratories 1 and 2. This ROS assay protocol is intended for use in screening phototoxicity potential and therefore requires high sensitivity. High sensitivity is more important than specificity in acquiring reliable photoreactivity assessments without false negatives, so these variations in specificity are acceptable.

9-3. Predictivity

In the Phase 2 results, as shown in Table 25, the sensitivity of each laboratory was 100%. In theory, the ROS assay is designed to capture all photochemically active substances that can be detected as type I and/or II photochemical reactions induced by irradiated chemicals. These photochemical reactions were observed at a very early stage of chemical-induced phototoxic cascades, so that the ROS assay had been thought effective for photosafety evaluation of pharmaceuticals. There is, however, a good probability that some photolabile substances would also be recognized as phototoxic by the ROS assay because of significant ROS generation during the photodegradation processes. Based on the validation study results, the criteria for the ROS assay results was revised in the proposed protocol as stated in Section 8-6. According to the original criteria, some of the false positives observed in the Phase 2 study, which included phenytoin [Chen Y. et al., 2009] (No. II-28), penicillin G [Ray R. S. et al., 1996] (No. II-27), chlorhexidine [Information from manufacture] (No. II-31), cinnamic acid [Marin M. L. et al., 2007] (No. II-32), L-histidine [Huvaere K. et al., 2009] (No. II-34), and octyl methacrylate [Information from manufacture] (No. II-37), had previously been reported to be photodegradable and photoreactive, the mechanisms of which included radical reactions and/or electron transfer. This could explain in part the data discrepancy observed between the ROS assay and in vitro/in vivo phototoxicity, and a better understanding of this limitation would be of great help in avoiding overestimation or misleading conclusions. After the criteria for the proposed protocol was adopted, penicillin G, phenytoin, chlorhexidine, cinnamic acid, and L-histidine were classified as weakly photoreactive. Since the ROS assay is intended for screening photoreactivity during initial

photosafety evaluation, it is preferable to minimize false negatives even at the cost of increased false positives. Although all chemicals that were classified as weakly photoreactive in the validation studies were non-phototoxic drugs or non-phototoxic non-drug chemicals, some drugs—such as amlodipine, amoxapine, bufexamac, and haloperidol—which could be related to clinical photosensitivity, would be classified as weakly photoreactive [Onoue et al., 2008a]. Test chemicals such as bumetrizole (II-29), drometrizole (II-33), methylbenzylidene camphor (II-35), octrizole (II-36), octyl methacrylate (II-37), octyl methoxycinnamate (II-38), octyl salicylate (II-39), and SDS (II-41), which could not be evaluated at 200 µM due to low solubility and were other than positive at 20 µM, were classified as inconclusive under the original criteria but were classified as non-photoreactive when the criteria for the proposed protocol was applied.

The VMT propose that negative results at $20\mu M$ not be accepted in order to avoid potential confusion after implementation of ICH S10 guideline. Drug candidates that are classified as weakly photoreactive or photoreactive in the ROS assay should be considered for follow-up non-clinical and/or clinical photosafety studies.

As observed in the present validation study, poorly water-soluble chemicals did satisfy neither positive nor negative criteria, leading to inconclusive results, and it appears that photosafety assessment of poorly water-soluble chemicals will require some modification of the protocols. Although analysis throughput would be decreased, the use of micellar solution systems could be effective for poorly soluble chemicals [Onoue S. et al., 2008b]. In order to overcome limitations of poorly water-soluble chemicals, a modified ROS assay system has been developed using bovine serum albumin in the lead laboratory. Careful elucidation of predictivity will of course be made for modified protocols, if such protocols are intended to use in regulatory decisions. In this validation study, volatile substances were not included as test chemicals. It was found that water droplets attached to the inside of the quartz plate and sealed by the quartz plate, but were not dispersed from the wells during the ROS assay; chemicals with volatility to some extent can be applied to the ROS assay and may not interfere other assay results in the same reaction container.

As shown in Table 30, sensitivities were the same under all criteria but specificities, positive predictivities, negative predictivities, and accuracies were lowest under draft criteria A. These parameters were relatively consistent for criteria B, C and D, although criteria D did show a slight advantage in specificity, positive predictivity and negative predictivity. Additionally, because only one assay is needed, draft criteria D also has an advantage in terms of throughput. Optimal criteria for final judgementjudgement will be determined in a comprehensive manner using results of another validation running parallel with this one but with a different solar simulator.

10. Performance standards

Performance standards have not been established for the ROS assays based on the present validation study, however a list of chemicals for testing the adequacy of solar simulators other than the Atlas Suntest CPS/CPS+ and Seric SXL2500v2 evaluated in the two present studies has been provided in the recommended protocol.

11. Conclusion

The present validation study assessed, on the basis of the standardized protocol utilizing Atlas Suntest CPS/CPS+, predictivity and reproducibility in distinguishing phototoxic and non-phototoxic chemicals using the physico-chemical ROS assay to evaluate phototoxic potential. High within- and between-laboratory reproducibility and transferability of methods were demonstrated at three facilities. Assessment demonstrated the capacity to

classify a balanced set of 41 test chemicals with a high degree of accuracy and no false negatives. Significant effort went into establishing well-defined judgement criteria based on ROS assay endpoints, which maximized applicability domain and assay performance with sensitivity of 100% (21chemicals/21 chemicals), specificity of 83.3% (15 chemicals/18 chemicals), positive predictivity of 87.5% (21 chemicals/24 chemicals), negative predictivity of 100% (15 chemicals/15 chemicals) and accuracy of 92.3% (36 chemicals/39 chemicals). These results support the routine use of the validated ROS assay protocol in preclinical drug screening for phototoxic potential.

12. References

Andersen K.E., Lindskov R. (1984) Recall of UVB-induced erythema in breast cancer patient receiving multiple drug chemotherapy. *Photodermatology*, **1**, 129-132.

Boccumini LE, Fowler CL, Campbell TA, Puertolas LF, Kaidbey KH. (2000) Photoreaction potential of orally administered levofloxacin in healthy subjects. *Ann Pharmacother.*, **34(4)**, 453-458.

Chen Y., Hu C., Hu X., Qu J. (2009) Indirect Photodegradation of amine drugs in aqueous solution under simulated sunlight. *Environ. Sci. Technol.*, **43**, 2760-2765.

Cooper-Hannan, R., Harbell, J.W., Coecke, S., Balls, M., Bowe, G., Cervinka, M., Clothier, R., Hermann, F., Klahm, L.K., de Lange, J., Liebsch, M. and Vanparys, P. (1999) The Principles of Good Laboratory Practice: Application to In Vitro Toxicology Studies. *ATLA* 27, 539-577

Dam C, Bygum A. (2008) Subacute cutaneous lupus erythematosus induced or exacerbated by proton pump inhibitors. *Acta Derm Venereol.*, **88(1)**, 87-89.

Dillaha CJ, Jansen GT, Honeycutt WM, Bradford AC. (1983) Selective cytotoxic effect of topical 5-fluorouracil. *Arch Dermatol.*, **119(9)**, 774-783.

Gaspar LR, Tharmann J, Maia Campos PM, Liebsch M. (2012) Skin phototoxicity of cosmetic formulations containing photounstable and photostable UV-filters and vitamin A palmitate. *Toxicol In Vitro*. In press Hartung T, Bremer S, Casati S, Coecke S, Corvi R, Fortaner S, Gribaldo L, Halder M, Hoffmann S, Roi AJ, Prieto P, Sabbioni E, Scott L, Worth A, Zuang V. (2004) A modular approach to the ECVAM principles on test validity. *Altern Lab Anim.* **32(5)**, 467-472

Huvaere K., Skibsted L. H. (2009) Light-induced oxidation of tryptophan and histidine. Reactivity of aromatic N-heterocycles toward triplet-excited flavins. *J. Am. Chem. Soc.*, **131**, 8049–8060.

Kirkup M.E., Narayan S., Kennedy C.T.C. (2003) Cutaneous recall reactions with systemic fluorouracil. *Dermatology*, **206**, 175-176.

Kleinman MH, Smith MD, Kurali E, Kleinpeter S, Jiang K, Zhang Y, Kennedy-Gabb SA, Lynch AM, Geddes CD. (2010) An evaluation of chemical photoreactivity and the relationship to phototoxicity. *Regul Toxicol Pharmacol.*; **58(2)**, 224-232.

Ljunggren B, Sjövall P. (1986) Systemic quinine photosensitivity. Arch Dermatol., 122(8), 909-911.

Marin M. L., Miguel A., Santos-Juanes L., Arques A., Amat A. M., Miranda M. A. (2007) Involvement of triplet excited states in the electron transfer photodegradation of cinnamic acids using pyrylium and thiapyrylium salts as photocatalysts. *Photochem. Photobiol. Sci.*, **6**, 848–852.

Masuda T., Honda S., Nakauchi Y., Ito H., Kinoshita M., Harada S., Yaoita H. and Mizoguchi M. (1971) Photocontact dermatitis due to bithionol, TBS, diaphene and hexachlorophene. *Jap J Dermatol.*, **81**(7), 566-583.

Miolo G., Marzano.C, Gandin V., Palozzo A.C., Dalzoppo D., Salvador A, Caffieri S. (2011) Photoreactivity of 5-Fluorouracil under UVB Light. *Chemical Research in Toxicology*, **24**, 1319–1326.

OECD (2005) OECD Environment, Health and Safety Publications Series on Testing and Assessment No. 34: Guidance Document on the Validation and International Acceptance of 16 New or Updated Test Methods for Hazard Assessment.

Onoue S, Igarashi N, Yamada S, Tsuda Y. (2008a) High-throughput reactive oxygen species (ROS) assay: an enabling technology for screening the phototoxic potential of pharmaceutical substances. *J Pharm Biomed Anal.*, **46(1)**, 187-193.

Onoue S., Yamauchi Y., Kojima T., Igarashi N., Tsuda Y. (2008b) Analytical studies on photochemical behavior of phototoxic substances; Effect of detergent additives on singlet oxygen generation. *Pharm. Res.*, **25**, 861–868.

Onoue S, Ochi M, Gandy G, Seto Y, Igarashi N, Yamauchi Y, Yamada S. (2010) High-throughput screening system for identifying phototoxic potential of drug candidates based on derivatives of reactive oxygen metabolites. *Pharm Res.*, **27(8)**, 1610-1619.

Peters B. and Holzhütter HG. (2002) In Vitro Phototoxicity Testing: Development and Validation of a New Concentration Response Analysis Software and Biostatistical Analyses Related to the Use of Various

Prediction Models. ATLA 30, 415-432.

Przybilla B, Ring J, Schwab U, Galosi A, Dorn M, Braun-Falco O. (1987) Photosensitizing properties of nonsteroidal antirheumatic drugs in the photopatch test. *Hautarzt.*, **38(1)**, 18-25.

Ray R. S., Mehrotra S., Prakash S., Joshi P. C. (1996) Ultraviolet radiation-induced production of superoxide radicals by selected antibiotics. *Drug Chem. Toxicol.*, **19**, 121–130.

Schauder S, Ippen H. (1997) Contact and photocontact sensitivity to sunscreens. Review of a 15-year experience and of the literature. *Contact Dermatitis.* **37(5)**, 221-232.

Seto Y, Inoue R, Ochi M, Gandy G, Yamada S, Onoue S. (2011) Combined use of in vitro phototoxic assessments and cassette dosing pharmacokinetic study for phototoxicity characterization of fluoroquinolones. *AAPS J.*, **13(3)**, 482-492.

Spielmann H, Balls M, Brand M, Döring B, Holzhütter HG, Kalweit S, Klecak G, Eplattenier HL, Liebsch M, Lovell WW, Maurer T, Moldenhauer F, Moore L, Pape WJ, Pfanenbecker U, Potthast J, De Silva O, Steiling W, Willshaw A. (1994a) EEC/COLIPA project on in vitro phototoxicity testing: First results obtained with a Balb/c 3T3 cell phototoxicity assay. *Toxicol In Vitro.*, **8(4)**, 793-796.

Spielmann, H., Lovell, W.W., Hölzle, E., Johnson, B.E., Maurer, T., Miranda, M.A., Pape, W.J.W., Sapora, O. and Sladowski, D. (1994b) In vitro phototoxicity testing: The report and recommendations of ECVAM workshop 2. *ATLA* **22**, 314-348.

Spielmann H, Balls M, Dupuis J, Pape WJ, Pechovitch G, de Silva O, Holzhütter HG, Clothier R, Desolle P, Gerberick F, Liebsch M, Lovell WW, Maurer T, Pfannenbecker U, Potthast JM, Csato M, Sladowski D, Steiling W, Brantom P. (1998a) The International EU/COLIPA In Vitro Phototoxicity Validation Study: Results of Phase II (Blind Trial). Part 1: The 3T3 NRU Phototoxicity Test. *Toxicol In Vitro.*, **12(3)**, 305-327. Spielmann H., Balls M., Dupuis J., Pape WJ, De Silva O., Holzhütter HG., Gerberick F., Liebsch M., Lovell WW. and Pfannenbecker U. (1998b) A Study on UV Filter Chemicals from Annex VII of European Union Directive 76/768/EEC, in the In Vitro 3T3 NRU Phototoxicity Test. *ATLA* **26**, 679-708.

Szczurko C, Dompmartin A, Michel M, Moreau A, Leroy D. (1994) Photocontact allergy to oxybenzone: ten years of experience *Photodermatol Photoimmunol Photomed.* **10(4)**, 144-147.

Trevisi P, Vincenzi C, Chieregato C, Guerra L, Tosti A. (1994) Sunscreen sensitization: a three-year study. *Dermatology*. **189(1)**, 55-57.

Wagai N, Yoshida M, Takayama S. (1992) Phototoxic potential of the new quinolone antibacterial agent levofloxacin in mice. *Arzneimittelforschung.* **43(3A)**, 404-405.

Table 3 Within-laboratory variation of Phase 1 study

ROS assay	Validation data (atla	s)		I	ab 1			I	Lab 2			Ι	ab 3	
	Chemicals		N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)
Intra-day														
Positive	Ossimin -	SO	6	462	14.4	3.1	4	402	14.8	3.7	4	359	6.9	1.9
Control	Quinine	SA	6	372	11.1	3.0	4	343	28.7	8.4	4	217	14.2	6.5
Negative	Culiachangana	SO	6	2	12.2	-	4	1	2.4	-	4	-7	1.0	-
Control	Sulisobenzone	SA	6	-12	2.3	-	4	-7	2.4	-	4	-2	0.5	-
Inter-day														
Positive	Quinine	SO	3	455	4.5	1.0	3	401	18.6	4.6	3	359	7.6	2.1
Control	Quilline	SA	3	349	16.2	4.6	3	335	17.8	5.3	3	223	10.0	4.5
Negative	Sulisobenzone	SO	3	3	8.7	-	3	-1	1.0	-	3	-5	3.0	-
Control	Sunsovenzone	SA	3	-14	6.4	-	3	-7	4.6	-	3	-2	1.0	-

SO: Singlet oxygen

Table 4 Between-laboratory variation of Phase 1 study

ROS assay	Validation	data ((atlas)	١
-----------	------------	--------	---------	---

	(
	Chemicals		N	Mean	SD	CV (%)	
Positive	Quinine	SO	3	410	50.0	12.2	
Control	Quilline	SA	3	312	82.9	26.6	
Negative	G 11 1	SO	3	-2	2.0	-	
Control	Sulisobenzone	SA	3	-7	5.0	-	

Between-laboratory variations were calculated from the average value of the results of each facility.

SA: Superoxide anion CV: CV (coefficient of variation) values are presented when the assay results of SA or SO were judged positive based on the mean values.

Intra-day variations were calculated by selecting the date on which a number of assay results were obtained most. Inter-day variations were calculated based on the results of an assay of the day.

SO : Singlet oxygen SA : Superoxide anion

CV: CV (coefficient of variation) values are presented when the assay results of SA or SO were judged positive based

Table 5 Results of the ROS assay multi-center variation Phase 1 study

ROS assay V	Validation data (atlas)					Lab 1							Lab 2							Lab 3			
No.	Chemicals Name		Conc (µM)	1st	Assay 2nd	3rd	Mean	SD	CV (%)	Conc (µM)	1st	Assay 2nd	3rd	Mean	SD	CV (%)	Conc (µM)	1st	Assay 2nd	3rd	Mean	SD	CV (%)
I - 1 5-F	TI	SO	20	2	-1	-1	0	1.7	-	20	4	-1	-9	-2	6.6	-	20	-4	-4	-1	-3	1.7	-
1-1 3-1	U	SA	20	-18	-13	-9	-13	4.5	-	20	-1	-2	-3	-2	1	-	20	0	1	8	3	4.4	-
I - 2 8-M	MOD.	SO	20	9	7	9	8	1.2	-	20	9	6	13	9	3.5	-	20	7	6	9	7	1.5	-
1-2 0-10	101	SA	20	-34	-32	-37	-34	2.5	-	20	7	6	1	5	3.2	-	20	3	4	2	3	1	-
I-3 Am	io donomo B	SO	20	135	129	126	130	4.6	3.53	20	93	65	86	81	14.6	17.92	20	82	82	85	83	1.7	2.09
1-3 AIII	nodarone	SA	20	-27	-18	-16	-20	5.9	-	20	-4	3	-5	-2	4.4	-	20	5	8	7	7	1.5	-
I 4 Chi	lorpromazine	SO	20	94	89	89	91	2.9	3.18	20	75	75	60	70	8.7	12.37	20	92	100	101	98	4.9	5.05
1 - 4 Cni	orpromazine	SA	20	-21	-14	-14	-16	4	-	20	21	21	19	20	1.2	5.68	20	12	13	12	12	0.6	-
I - 5 Dic	1.6	SO	20	163	160	161	161	1.5	0.95	20	101	113	90	101	11.5	11.35	20	155	147	145	149	5.3	3.55
1 - 5 Dic	riorenac	SA	20	8	14	14	12	3.5	-	20	9	8	5	7	2.1	-	20	8	10	9	9	1	-
I (D		SO	20	85	67	94	82	13.7	16.77	20	79	57	66	67	11.1	16.43	20	50	51	56	52	3.2	6.14
I - 6 Dox	xycycine	SA	20	20	29	31	27	5.9	21.97	20	67	35	56	53	16.3	30.87	20	45	45	44	45	0.6	1.29
I - 7 Fur	osemide	SO	20	35	35	42	37	4	10.83	20	30	31	19	27	6.7	24.97	20	24	24	31	26	4	15.35
1-/ Fun	osemide	SA	20	-15	-14	-15	-15	0.6	-	20	6	8	-2	4	5.3	-	20	5	6	5	5	0.6	-
I 0 1/-4		SO	20	41	30	48	40	9.1	22.88	20	30	31	33	31	1.5	4.88	20	41	40	44	42	2.1	5
I - 8 Ket	toproten	SA	20	-29	-31	-7	-22	13.3	-	20	4	3	6	4	1.5	-	20	1	2	2	2	0.6	-
	a :	SO	20	33	46	36	38	6.8	17.76	20	28	30	20	26	5.3	20.35	20	35	34	39	36	2.6	7.35
I-9 Lev	ofloxacin	SA	20	172	161	150	161	11	6.83	20	191	209	181	194	14.2	7.33	20	162	134	141	146	14.6	10
I 10 N	a :	SO	20	82	77	122	94	24.7	26.33	20	60	59	55	58	2.6	4.56	20	58	53	56	56	2.5	4.52
I - 10 Nor	rtioxacin	SA	20	4	3	7	5	2.1	-	20	21	28	23	24	3.6	15.02	20	18	15	16	16	1.5	-
		SO	20	66	71	68	68	2.5	3.68	20	57	65	59	60	4.2	6.9	20	49	47	55	50	4.2	8.27
I - 11 Om	ieprazoie	SA	20	12	8	8	9	2.3	_	20	36	35	36	36	0.6	1.62	20	22	14	19	18	4	-
I 12 C		SO	20	124	121	113	119	5.7	4.77	20	117	115	109	114	4.2	3.66	20	74	81	84	80	5.1	6.44
I - 12 Qui	inine	SA	20	10	8	21	13	7	-	20	65	65	59	63	3.5	5.5	20	34	26	31	30	4	13.32
T 12 C 1		SO	20	-11	-2	-10	-8	4.9	-	20	-1	3	-9	-2	6.1	-	20	-3	-2	2	-1	2.6	
I - 13 Suli	isobenzone	SA	20	-6	-7	-22	-12	9	_	20	-3	-2	-4	-3	1	_	20	-2	-1	-1	-1	0.6	_

SO: Singlet oxygen SA: Superoxide anion
CV: CV (coefficient of variation) values are presented when the assay results of SA or SO were judged positive based on the mean values.
a: Since the precipitation was observed at a concentration of 20 µM of Amiodarone in the Phase 2 study, it is considered that the precipitation have been formed at 20µM and 200µM in this study.

Table 5 Results of the ROS assay multi-center variation Phase 1 study (continued)

ROS assay Validation data (atlas	s)				Lab 1							Lab 2							Lab 3			
Chemicals No. Name		Conc (µM)	1st	Assay 2nd	3rd	Mean	SD	CV (%)	Conc (µM)	1st	Assay 2nd	3rd	Mean	SD	CV (%)	Conc (µM)	1st	Assay 2nd	3rd	Mean	SD	CV (%)
I - 1 5-FU	SO SA	200 200	0 -8	-2 -9	1 -7	0 -8	1.5 1	-	200 200	1 -3	-2 0	0 -5	0 -3	1.5 2.5	-	200 200	-6 0	-2 0	-1 0	-3 0	2.6 0	-
I - 2 8-MOP	SO SA	200 200	121 -2	123 5	122 4	122 2	1 3.8	0.82	200 200	60 64	65 76	58 50	61 63	3.6 13	5.91 20.55	200 200	42 15	55 18	51 15	49 16	6.7 1.7	13.5
I - 3 Amiodarone ^a	SO SA	200 200	259 -230	192 -196	247 -232	233 -219	35.7 20.2	15.35	200 200	379 -59	311 -194	443 -159	378 -137	66 70.1	17.48	200 200	319 -114	393 20	362 -82	358 -59	37.2 70	10.38
I - 4 Chlorpromazine	SO SA	200 200	-3 80	-12 78	-7 78	-7 79	4.5 1.2	- 1.47	200 200	-36 90	-35 113	-37 98	-36 100	1 11.7	- 11.64	200 200	16 78	19 74	9 76	15 76	5.1 2	2.63
I - 5 Diclofenac	SO SA	200 200	312 364	318 362	321 365	317 364	4.6 1.5	1.45 0.42	200 200	241 263	263 305	234 302	246 290	15.1 23.4	6.15 8.08	200 200	330 303	330 286	328 300	329 296	1.2 9.1	0.35 3.06
I - 6 Doxycycline	SO SA	200 200	113 321	111 321	117 323	114 322	3.1 1.2	2.69 0.36	200 200	198 394	227 411	186 368	204 391	21.1 21.7	10.35 5.54	200 200	175 308	161 315	170 314	169 312	7.1 3.8	4.21 1.21
I - 7 Furosemide	SO SA	200 200	190 102	196 99	198 94	195 98	4.2 4	2.14 4.11	200 200	129 60	138 76	131 65	133 67	4.7 8.2	3.56 12.22	200 200	110 42	117 44	117 43	115 43	4 1	3.52 2.33
I - 8 Ketoprofen	SO SA	200 200	252 90	248 94	255 94	252 93	3.5 2.3	1.4 2.49	200 200	210 107	202 95	242 109	218 104	21.2 7.6	9.71 7.3	200 200	204 58	197 52	209 51	203 54	6 3.8	2.96 7.05
I - 9 Levofloxacin	SO SA	200 200	204 371	188 390	191 379	194 380	8.5 9.5	4.38 2.51	200 200	125 455	127 472	134 441	129 456	4.7 15.5	3.67 3.4	200 200	116 440	118 451	125 443	120 445	4.7 5.7	3.95 1.28
I - 10 Norfloxacin	SO SA	200 200	211 116	208 119	213 115	211 117	2.5 2.1	1.19 1.78	200 200	154 148	148 164	159 151	154 154	5.5 8.5	3.58 5.51	200 200	155 121	143 117	155 102	151 113	6.9 10	4.59 8.84
I - 11 Omeprazole	SO SA	200 200	-29 118	-31 109	-24 116	-28 114	3.6 4.7	4.13	200 200	-46 141	-56 147	-49 149	-50 146	5.1 4.2	2.86	200 200	-36 141	-30 131	-59 144	-42 139	15.3 6.8	4.91
I - 12 Quinine	SO SA	200 200	433 387	432 394	456 379	440 387	13.6 7.5	3.08 1.94	200 200	406 395	405 396	415 372	409 388	5.5 13.6	1.35 3.5	200 200	346 215	337 209	345 195	343 206	4.9 10.3	1.44 4.97
I - 13 Sulisobenzone	SO SA	200 200	4 -13	7 -9	2 -16	4 -13	2.5 3.5	-	200 200	-1 -6	-1 -6	4 -6	1 -6	2.9 0	-	200 200	-9 -1	-4 -3	-4 -3	-6 -2	2.9 1.2	-

SO: Singlet oxygen SA: Superoxide anion
CV: CV (coefficient of variation) values are presented when the assay results of SA or SO were judged positive based on the mean values.
a: Since the precipitation was observed at a concentration of 20 µM of Amiodarone in the Phase 2 study, it is considered that the precipitation have been formed at 20µM and 200µM in this study.

Table 6A Judgement from the Phase 1 results: Final judgement of positive when positive results were obtained in at least one of three assays 20 μM

	say Validation data pattern A		La	b 1			La	ıb 2			La	ab 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement b
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
I - 1	5-FU	-	-	-	-	-	-	-	-	-	-	-	-	-
I - 2	8-MOP	-	-	-	-	-	-	-	-	-	-	-	-	-
I - 3	Amiodarone a	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 4	Chlorpromazine	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 5	Diclofenac	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 6	Doxycycline	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 7	Furosemide	+	+	+	+	+	+	-	+	-	-	+	+	+
I - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 9	Levofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 10	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 11	Omeprazole	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 12	Quinine	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 13	Sulisobenzone	-	-	-	-	-	-	-	-	-	-	-	-	-

200	3.4
- 71 W Y	111/1
200	μM

	say Validation data pattern A		La	b 1			La	b 2			La	b 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement ^b
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
I - 1	5-FU	-	-	-	-	-	-	-	-	-	-	-	=	-
I - 2	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 3	Amiodarone a	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 4	Chlorpromazine	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 5	Diclofenac	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 6	Doxycycline	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 9	Levofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 10	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 11	Omeprazole	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 12	Quinine	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 13	Sulisobenzone	-		-	-	-	-	-	-	-	-	-	-	-

^{+:} positive(Singlet oxygen results ≥25 or Superoxide results ≥20)
-: negative(Singlet oxygen results <25 and Superoxide results <20)
a: Since the precipitation was observed at a concentration of 20 μM of Amiodarone in the Phase 2 study, it is considered that the precipitation have been formed at 20μM and 200μM in this study.
b: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 6B Judgement from the Phase 1 results: Final judgement based on the mean value of three assays

 $20\;\mu M$

	say Validation data pattern B		La	ıb 1			La	b 2			La	b 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement ^b
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
I - 1	5-FU	-	-	-	-	-	_	-	-	-	-	-	-	-
I - 2	8-MOP	-	-	-	-	-	-	-	-	-	-	-	-	-
I - 3	Amiodarone a	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 4	Chlorpromazine	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 5	Diclofenac	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 6	Doxycycline	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 7	Furosemide	+	+	+	+	+	+	-	+	-	-	+	+	+
I - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 9	Levofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 10	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 11	Omeprazole	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 12	Quinine	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 13	Sulisobenzone	-	-	-	-	-	-	-	-	-	-	-	-	-

$200~\mu M$

	say Validation data pattern B		La	b 1			La	ıb 2			La	ab 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement b
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
I - 1	5-FU	-	-	-	-	-	-	-	-	-	-	-	-	-
I - 2	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 3	Amiodarone a	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 4	Chlorpromazine	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 5	Diclofenac	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 6	Doxycycline	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 9	Levofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 10	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 11	Omeprazole	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 12	Quinine	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 13	Sulisobenzone	-	_	_	-	-	_	_	-	_	_	_	_	-

^{+:} positive(Singlet oxygen results ≥25 or Superoxide results ≥20)
-: negative(Singlet oxygen results <25 and Superoxide results <20)
a: Since the precipitation was observed at a concentration of 20 μM of Amiodarone in the Phase 2 study, it is considered that the precipitation have been formed at 20μM and 200μM in this study.
b: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 6C Judgement from the Phase 1 results: Final judgement based on the majority of three assay results

20 μΜ

	say Validation data pattern C		La	b 1			La	b 2			La	b 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement b
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
I - 1	5-FU	-	-	-	-	-	-	-	-	-	-	-	-	-
I - 2	8-MOP	-	-	-	-	-	-	-	-	-	-	-	-	-
I - 3	Amiodarone a	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 4	Chlorpromazine	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 5	Diclofenac	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 6	Doxycycline	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 7	Furosemide	+	+	+	+	+	+	-	+	-	-	+	-	+
I - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 9	Levofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 10	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 11	Omeprazole	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 12	Quinine	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 13	Sulisobenzone	-	-	-	-	-	-	-	-	-	-	-	-	-

$200~\mu M$

ROS ass (atlas) p	say Validation data attern C	. <u> </u>	La	ıb 1			La	b 2			La	ıb 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement b
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
I - 1	5-FU	-	-	-	-	-	-	-	-	-	-	-	-	-
I - 2	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 3	Amiodarone a	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 4	Chlorpromazine	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 5	Diclofenac	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 6	Doxycycline	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 9	Levofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 10	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 11	Omeprazole	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 12	Quinine	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 13	Sulisobenzone	-	-	-	-	-	-	-	-	-	-	-	-	-

^{+:} positive(Singlet oxygen results ≥25 or Superoxide results ≥20)
-: negative(Singlet oxygen results <25 and Superoxide results <20)
a: Since the precipitation was observed at a concentration of 20 μM of Amiodarone in the Phase 2 study, it is considered that the precipitation have been formed at 20μM and 200μM in this study.
b: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 6D Judgement from the Phase 1 results: Final judgement based on the first assay results 20 μΜ

	say Validation data attern D		La	ıb 1			La	ıb 2			La	ıb 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement ^b
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
I - 1	5-FU	-	-	-	-	-	-	-	-	-	-	-	-	-
I - 2	8-MOP	-	-	-	-	-	-	-	-	-	_	-	-	-
I - 3	Amiodarone a	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 4	Chlorpromazine	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 5	Diclofenac	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 6	Doxycycline	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 7	Furosemide	+	+	+	+	+	+	-	+	-	-	+	-	+
I - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 9	Levofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 10	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 11	Omeprazole	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 12	Quinine	+	+	+	+	+	+	+	+	+	+	+	+	+

$200 \, \mu M$

Sulisobenzone

I - 13

ROS ass (atlas) p	say Validation data attern D		La	ıb 1			La	ıb 2	2 Lab 3					
	Chemicals	· ·	Assay		Final judg-		Assay		Final judg-	·	Assay		Final judg-	Integrated Judgement ^b
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
I - 1	5-FU	-	-	-	-	-	-	-	-	-	-	-	-	-
I - 2	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 3	Amiodarone a	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 4	Chlorpromazine	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 5	Diclofenac	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 6	Doxycycline	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 9	Levofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 10	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 11	Omeprazole	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 12	Quinine	+	+	+	+	+	+	+	+	+	+	+	+	+
I - 13	Sulisobenzone	-	-	-	-	-	-	-	-	-	-	-	-	-

^{+:} positive(Singlet oxygen results ≥25 or Superoxide results ≥20)
-: negative(Singlet oxygen results <25 and Superoxide results <20)
a: Since the precipitation was observed at a concentration of 20 μM of Amiodarone in the Phase 2 study, it is considered that the precipitation have been formed at 20μM and 200μM in this study.
b: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 7A Contingency table for the Phase 1 results at 20 µM: Final judgement of positive when positive results were obtained in at least one of three assays

Concentration: 20 µM

Lab 1		RO	T-4-1	
		+	-	Total
	+	10	2	12
Phototoxic	-	0	1	1
Total		10	3	13

Sensitivity: 83.3% (10/12) Specificity: 100% (1/1)

Positive predictivity: 100% (10/10) Negative predictivity: 33.3% (1/3)

Accuracy: 84.6% (11/13)

Lab 2		RO	Т-4-1	
		+	-	Total
	+	10	2	12
Phototoxic	-	0	1	1
Total		10	3	13

Sensitivity: 83.3% (10/12) Specificity: 100% (1/1)

Positive predictivity: 100% (10/10) Negative predictivity: 33.3% (1/3)

Accuracy: 84.6% (11/13)

Lab 3		RO	T. 4.1	
		+	-	Total
	+	10	2	12
Phototoxic	-	0	1	1
Total		10	3	13

Sensitivity: 83.3% (10/12) Specificity: 100% (1/1)

Positive predictivity: 100% (10/10) Negative predictivity: 33.3% (1/3)

Accuracy: 84.6% (11/13)

Integrated Judgement		RO	ROS			
		+	-	Total		
Phototoxic	+	10	2	12		
	-	0	1	1		
Total		10	3	13		

Sensitivity: 83.3% (10/12) Specificity: 100% (1/1)

Positive predictivity: 100% (10/10) Negative predictivity: 33.3% (1/3)

Table 7B Contingency table for the Phase 1 results at 20 μ M: Final judgement based on the mean value of three assays

Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

Concentration: 20 µM

Lab 1		RO	T. 4.1	
		+	-	Total
N	+	10	2	12
Phototoxic	-	0	1	1
Total		10	3	13

Sensitivity: 83.3% (10/12) Specificity: 100% (1/1)

Positive predictivity: 100% (10/10) Negative predictivity: 33.3% (1/3)

Accuracy: 84.6% (11/13)

Lab 2		RO	T. 4.1	
		+	-	Total
	+	10	2	12
Phototoxic	-	0	1	1
Total		10	3	13

Sensitivity: 83.3% (10/12) Specificity: 100% (1/1)

Positive predictivity: 100%(10/10) Negative predictivity: 33.3% (1/3)

Accuracy: 84.6% (11/13)

Lab 3		RO	T. 4.1	
		+	-	Total
	+	10	2	12
Phototoxic	-	0	1	1
Total		10	3	13

Sensitivity: 83.3% (10/12) Specificity: 100% (1/1)

Positive predictivity: 100% (10/10) Negative predictivity: 33.3% (1/3)

Accuracy: 84.6% (11/13)

Integrated Judgement		RO	Total	
		+	-	Total
Phototoxic	+	10	2	12
	-	0	1	1
Total		10	3	13

Sensitivity: 83.3% (10/12) Specificity: 100% (1/1)

Positive predictivity: 100% (10/10) Negative predictivity: 33.3% (1/3)

Table 7C Contingency table for the Phase 1 results at 20 μ M: Final judgement based on the majority of three assay results

Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

Concentration: 20 µM

Lab 1		RO	T-4-1	
		+	-	Total
Phototoxic	+	10	2	12
	-	0	1	1
Total		10	3	13

Sensitivity: 83.3% (10/12) Specificity: 100% (1/1)

Positive predictivity: 100% (10/10) Negative predictivity: 33.3% (1/3)

Accuracy: 84.6% (11/13)

Lab 2		RO	Т-4-1	
		+	-	Total
	+	10	2	12
Phototoxic	-	0	1	1
Total		10	3	13

Sensitivity: 83.3% (10/12) Specificity: 100% (1/1)

Positive predictivity: 100% (10/10) Negative predictivity: 33.3% (1/3)

Accuracy: 84.6% (11/13)

1.1.2		RO	T . 1	
Lab 3		+	-	Total
Phototoxic	+	9	3	12
	-	0	1	1
Total		9	4	13

Sensitivity: 75.0% (9/12) Specificity: 100% (1/1)

Positive predictivity: 100% (9/9) Negative predictivity: 25.0% (1/4)

Accuracy: 76.9% (10/13)

Integrated		RO	Total	
Judgement	t	+		
Phototoxic	+	10	2	12
	-	0	1	1
Total		10	3	13

Sensitivity: 83.3% (10/12) Specificity: 100% (1/1)

Positive predictivity: 100% (10/10) Negative predictivity: 33.3% (1/3)

Table 7D Contingency table for the Phase 1 results at 20 μ M: Final judgement based on the first assay results

Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

Concentration: 20 µM

T 1 1		RO	Total				
Lab 1		+ -					
Phototoxic	+	10	2	12			
	1	0	1	1			
Total		10	3	13			

Sensitivity: 83.3% (10/12) Specificity: 100% (1/1)

Positive predictivity: 100% (10/10) Negative predictivity: 33.3% (1/3)

Accuracy: 84.6% (11/13)

1.1.2		RO	T.4.1	
Lab 2		+	-	Total
	+	10	2	12
Phototoxic	-	0	1	1
Total		10	3	13

Sensitivity: 83.3% (10/12) Specificity: 100% (1/1)

Positive predictivity: 100% (10/10) Negative predictivity: 33.3% (1/3)

Accuracy: 84.6% (11/13)

1.1.2		RO	T . 1	
Lab 3		+	-	Total
Phototoxic	+	9	3	12
	-	0	1	1
Total		9	4	13

Sensitivity: 75.0% (9/12) Specificity: 100% (1/1)

Positive predictivity: 100% (9/9) Negative predictivity: 25.0% (1/4)

Accuracy: 76.9% (10/13)

Integrated		RO	Total	
Judgement	t	+		
Phototoxic	+	10	2	12
	-	0	1	1
Total		10	3	13

Sensitivity: 83.3% (10/12) Specificity: 100% (1/1)

Positive predictivity: 100% (10/10) Negative predictivity: 33.3% (1/3)

Table 7E Contingency table for the Phase 1 results at 200 μ M: The final judgements were the same in all of the analysis methods

Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

Concentration: 200 µM

T 1 1		RO	Total	
Lab 1		+		
Phototoxic	+	11	1	12
	-	0	1	1
Total		11	2	13

Sensitivity: 91.7% (11/12) Specificity: 100% (1/1)

Positive predictivity: 100% (11/11) Negative predictivity: 50.0% (1/2)

Accuracy: 92.3% (12/13)

1.1.2		RO	T. (1	
Lab 2		+	-	Total
DI	+	11	1	12
Phototoxic	-	0	1	1
Total		11	2	13

Sensitivity: 91.7% (11/12) Specificity: 100% (1/1)

Positive predictivity: 100% (11/11) Negative predictivity: 50.0% (1/2) Accuracy: 92.3% (12/13)

1.1.2		RO	T . 1	
Lab 3		+	-	Total
Phototoxic	+	11	1	12
	-	0	1	1
Total		11	2	13

Sensitivity: 91.7% (11/12) Specificity: 100% (1/1)

Positive predictivity: 100% (11/11) Negative predictivity: 50.0% (1/2)

Accuracy: 92.3% (12/13)

Integrated		RO	Total				
Judgement		+	+ -				
	+	11	1	12			
Phototoxic	-	0	1	1			
Total		11	2	13			

Sensitivity: 91.7% (11/12) Specificity: 100% (1/1)

Positive predictivity: 100% (11/11) Negative predictivity: 50.0% (1/2)

Accuracy: 92.3% (12/13)

Table 8 Irradiance and temperature during the irradiation in the Phase 2 study

_			Lab 1					Lab 2					Lab 3				
			Mean	SD	CV (%)	Max	Min	Mean	SD	CV (%)	Max	Min	Mean	SD	CV (%)	Max	Min
	Beginning of	A	1.8	0	-	1.8	1.8	1.4	0.01	0.7	1.4	1.4	1.2	0.06	5.0	1.2	1.0
Irradiance	Irradiation	В	2.1	0	-	2.1	2.1	1.9	0.05	2.6	2.0	1.8	2.1	0.12	5.7	2.2	1.8
(mW/cm^2)	End of	A	1.8	0	-	1.8	1.8	1.4	0.01	0.7	1.5	1.4	1.2	0.05	4.2	1.2	1.1
	Irradiation	В	2.1	0	-	2.1	2.1	1.9	0.06	3.2	2.0	1.8	2.1	0.10	4.8	2.2	2.0
Temperature (°C)	Beginning of Irradiation		26.3	1.46	5.6	29	24	24.5	0.55	2.2	25.4	22.8	24.6	1.21	4.9	27.6	21.9
	End of Irradiation		26.1	1.58	6.1	29	24	25.0	0.12	0.5	25.2	24.8	25.1	1.43	5.7	28.3	23.0

A: Irradiances which were measured with each test facility's UVA detector.

B: Standardized irradiances which were calculated as the irradiances by the calibrated UVA detector Dr. Hőnle was transferred to each facility and the conversion factor for the standardized irradiances was prepared based on the values from the UVA detectors. CV: Coefficient of variation

Table 9 Within-laboratory variation of Phase 2 study

ROS assay Validation data (atlas)			Lab 1				Lab 2				Lab 3			
	Chemicals		N	Mean	SD	CV (%)	N	Mean	SD	CV (%)	N	Mean	SD	CV (%)
Intra-day														
Positive	Ossimin -	SO	7	553	14.4	2.6	6	438	10.7	2.4	3	366	5.0	1.4
Control	Quinine	SA	7	424	30.8	7.3	6	305	11.7	3.8	3	306	26.7	8.7
Negative	C1:h	SO	7	5	9.6	-	6	0	3.2	-	3	-2	1.2	-
Control	Sulisobenzone	SA	7	-13	6.6	-	6	-12	3.0	-	3	-5	0	-
Inter-day														
Positive	Ovinina	SO	5	532	11.9	2.2	8	430	6.1	1.4	11	359	9.8	2.7
Control	Quinine S	SA	5	408	8.4	2.1	8	276	24.2	8.8	11	295	15.9	5.4
Negative Control	SO Sulisobenzone SA	SO	5	2	4.8	-	8	1	3.3	-	11	0	1.7	-
		SA	5	-14	7.8	-	8	-11	3.3	-	11	-6	1.2	-

SO: Singlet oxygen

Intra-day variations were calculated by selecting the date on which a number of assay results were obtained most. Inter-day variations were calculated based on using the assay results of the first assay of the each assay day.

Table 10 Between-laboratory variation of Phase 2 study

ROS assay Validation data (atlas)

reob assay	rundation data (atta)					
	Chemicals		N	Mean	SD	CV (%)	
Positive	Quinine	SO	3	445	91.8	20.6	
Control	Quinine	SA	3	323	64.9	20.1	
Negative	G F 1	SO	3	2	2.6	-	_
Control	Sulisobenzone	SA	3	-11	5.3	-	

SO: Singlet oxygen

Between-laboratory variations were calculated from the average value of the results of each facility.

SA: Superoxide anion CV: CV (coefficient of variation) values are presented when the assay results of SA or SO were judged positive based on the mean values.

SA: Superoxide anion

CV: CV (coefficient of variation) values are presented when the assay results of SA or SO were judged positive based on the mean values.

Table 11 Results of the ROS assay multi-center validation Phase 2 study

ROS ass	ay Validation data (atlas)					Lab 1							Lab 2							Lab 3			
	Chemicals		Conc		Assay		Mean	SD	CV	Conc		Assay		Mean	SD	CV	Conc		Assay		Mean	SD	CV
N0.	Name		(µM)	1st	2nd	3rd	Mean	SD	(%)	(µM)	1st	2nd	3rd	Mean	SD	(%)	(μΜ)	1st	2nd	3rd	Mean	SD	(%)
II - 1	Acridine	SO	200	225	233	222	227	5.7	2.51	200	229	218	214	220	7.8	3.53	200	223	221	223	222	1.2	0.52
11-1	Acridite	SA	200	228	231	215	225	8.5	3.79	200	191	209	190	197	10.7	5.44	200	192	172	168	177	12.9	7.25
II - 2	Acridine HCl	SO	200	224	214	223	220	5.5	2.5	200	226	216	224	222	5.3	2.38	200	215	215	218	216	1.7	0.8
11 - 2	Actionie (1C)	SA	200	211	215	215	214	2.3	1.08	200	198	212	181	197	15.5	7.88	200	176	181	164	174	8.7	5.03
II - 3	Amiodarone HCl	SO	2	33	9	22	21	12	-	2	25	38	28	30	6.8	22.44	2	36	51	48	45	7.9	17.64
11-3	Annouarone rici	SA	2	-16	-13	-5	-11	5.7	-	2	3	5	-5	1	5.3	-	2	0	2	0	1	1.2	-
II - 4	Chlorpromazine HCl	SO	200	-18	-41	-15	-25	14.2	-	200	-2	-13	-6	-7	5.6	-	200	-22	-32	-23	-26	5.5	-
11 - 4	Chiorpromazine riei	SA	200	84	106	97	96	11.1	11.56	200	97	99	109	102	6.4	6.32	200	87	84	78	83	4.6	5.52
II - 5	Doxycycline HCl	SO	200	271	269	262	267	4.7	1.77	200	222	234	222	226	6.9	3.07	200	166	160	160	162	3.5	2.14
11 3	Boxyeyenne rier	SA	200	353	486	342	394	80.2	20.36	200	413	437	411	420	14.5	3.44	200	247	249	261	252	7.6	3
II - 6	Fenofibrate	SO	20	124	202	173	166	39.4	23.7	2	5	18	11	11	6.5	-	20	161	161	161	161	0	0
11-0	Tellofforate	SA	20	0	-39	-31	-23	20.6	-	2	-6	17	-9	1	14.2	-	20	-9	-12	-12	-11	1.7	-
II - 7	Furosemide	SO	200	227	238	224	230	7.4	3.21	200	138	131	133	134	3.6	2.69	200	145	146	144	145	1	0.69
11 - 7	1 drosennae	SA	200	115	121	102	113	9.7	8.62	200	62	67	67	65	2.9	4.42	200	52	50	54	52	2	3.85
11 0	Ketoprofen	SO	200	358	362	368	363	5	1.39	200	245	259	240	248	9.8	3.97	200	224	220	206	217	9.5	4.36
11 - 0	Ketoprofeii	SA	200	130	122	137	130	7.5	5.79	200	107	117	109	111	5.3	4.77	200	80	88	87	85	4.4	5.13
II - 9	6-methylcoumarine	SO	200	114	111	120	115	4.6	3.98	200	103	122	142	122	19.5	15.94	200	106	96	99	100	5.1	5.11
11 - 9	0-methylcoumarme	SA	200	109	128	130	122	11.6	9.47	200	87	110	100	99	11.5	11.65	200	62	70	67	66	4	6.09
II 10	8-MOP	SO	200	83	101	78	87	12.1	13.85	200	81	79	60	73	11.6	15.8	200	65	77	70	71	6	8.53
11 - 10	8-MOI	SA	200	76	138	113	109	31.2	28.62	200	87	103	92	94	8.2	8.71	200	23	30	31	28	4.4	15.57
II 11	Nalidixic acid	SO	200	348	185	182	238	95	39.85	200	147	144	145	145	1.5	1.05	200	134	130	119	128	7.8	6.08
11 - 11	Nandixic acid	SA	200	355	271	264	297	50.6	17.07	200	254	206	252	237	27.2	11.44	200	294	356	314	321	31.6	9.85
II 12	Nalidixic acid (Na salt)	SO	200	183	165	183	177	10.4	5.87	200	144	140	149	144	4.5	3.12	200	125	124	119	123	3.2	2.62
11 - 12	Nandixic acid (Na Sait)	SA	200	287	233	203	241	42.6	17.66	200	218	192	211	207	13.5	6.5	200	299	341	320	320	21	6.56
II 12	Norfloxacin	SO	200	215	219	214	216	2.6	1.22	200	188	222	200	203	17.2	8.48	200	164	171	169	168	3.6	2.15
11 - 13	Normoxaciii	SA	200	145	139	113	132	17	12.85	200	132	120	119	124	7.2	5.85	200	149	149	139	146	5.8	3.96
II 14	Ofloxacin	SO	200	193	203	192	196	6.1	3.1	200	132	137	149	139	8.7	6.27	200	126	125	117	123	4.9	4.02
11 - 14	Olloxaciii	SA	200	351	228	274	284	62.1	21.86	200	288	292	292	291	2.3	0.79	200	420	439	446	435	13.5	3.09
II 16	p::	SO	200	191	210	232	211	20.5	9.72	200	207	230	221	219	11.6	5.28	200	168	160	153	160	7.5	4.68
11 - 15	Piroxicam	SA	20	28	38	26	31	6.4	20.96	20	56	47	43	49	6.7	13.68	20	4	3	7	5	2.1	-
п 16	December 11C1	SO	200	70	62	84	72	11.1	15.47	200	91	89	103	94	7.6	8.03	200	43	46	39	43	3.5	8.23
11 - 16	Promethazine HCl	SA	200	67	86	86	80	11	13.77	200	43	51	48	47	4	8.54	200	35	33	36	35	1.5	4.41
II 17	D1-114	SO	200	118	104	131	118	13.5	11.48	200	90	87	93	90	3	3.33	200	57	54	54	55	1.7	3.15
11 - 17	Rosiglitazone	SA	20	41	36	29	35	6	17.06	20	27	29	35	30	4.2	13.73	20	15	17	15	16	1.2	-
II. 10	T 1'	SO	200	200	194	200	198	3.5	1.75	200	167	160	166	164	3.8	2.3	200	134	129	129	131	2.9	2.21
11 - 18	Tetracycline	SA	200	197	216	218	210	11.6	5.51	200	240	255	239	245	9	3.66	200	146	101	123	123	22.5	18.24

SO: Singlet oxygen SA: Superoxide anion CV: CV (coefficient of variation) values are presented when the assay results of SA or SO were judged positive based on the mean values.

Table 11 Results of the ROS assay multi-center validation Phase 2 study (continued)

ROS ass	ay Validation data (atlas)					Lab 1							Lab 2							Lab 3			
	Chemicals		Conc		Assay			an.	CV	Conc		Assay			a.p.	CV	Conc		Assay			an.	CV
N0.	Name		(μM)	1st	2nd	3rd	Mean	SD	(%)	(μM)	1st	2nd	3rd	Mean	SD	(%)	(μΜ)	1st	2nd	3rd	Mean	SD	(%
II - 19	Anthracene	SO SA	20 2	261 39	340 48	272 1	291 29	42.8 24.9	14.7 85.05	2 2	-2 3	7 8	6 -3	4 3	4.9 5.5	-	2 2	5 4	3 4	4	4	1	-
		SO	20	142	121	117	127	13.4	10.6	2	0	12	10	7	6.4		20	58	60	65	61	3.6	5.9
II - 20	Avobenzone	SA	2	52	19	32	34	16.6	48.42	2	29	36	25	30	5.6	18.56	20	13	9	18	13	4.5	-
II - 21	Bithionol	SO SA	200 20	81 21	113 28	114 24	103 24	18.8 3.5	18.28 14.43	200 2	137 13	143 15	140 15	140 14	3 1.2	2.14	200 200	81 34	68 30	72 33	74 32	6.7 2.1	9.0 6.4
		SO	200	318	333	355	335	18.6	5.55	200	246	255	258	253	6.2	2.47	200	227	226	217	223	5.5	2.4
II - 22	Hexachlorophene	SA	200	6	22	7	12	9	-	2	-6	15	-3	2	11.4	-	200	10	8	6	8	2	-
II - 23	Rose bengal	SO	200	682	685	679	682	3	0.44	200	631	634	667	644	20	3.1	200	608	589	607	601	10.7	1.78
		SA SO	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE
II - 24	Aspirin	SO SA	200 200	1 -12	2 -15	4 10	2 -6	1.5 13.7	-	200 200	1 0	-1 -6	1 -4	0 -3	1.2 3.1	-	200 200	-2 -1	3 -1	1	1 -1	2.5 0.6	-
		SO	200	6	3	-2	2	4	<u> </u>	200	9	1	-12	-1	10.6	<u> </u>	200	0	4	3	2	2.1	-
II - 25	Benzocaine	SA	200	9	20	0	10	10	-	200	-4	12	6	5	8.1	_	200	0	1	0	0	0.6	_
II 26	E-41	SO	200	-16	5	8	-1	13.1		200	6	-1	13	6	7	-	200	0	-4	-3	-2	2.1	-
11 - 26	Erythromycin	SA	200	4	8	6	6	2	-	200	14	4	35	18	15.8	-	200	1	4	2	2	1.5	-
II _ 27	Penicillin G	SO	200	17	6	9	11	5.7	-	200	0	-1	4	1	2.6	-	200	0	5	4	3	2.6	-
11 – 27	T CHICHINI G	SA	200	11	26	40	26	14.5	56.5	200	37	36	34	36	1.5	4.28	200	4	11	16	10	6	-
II - 28	Phenytoin	SO	200	1	19	3	8	9.9	- 22.10	200	0	-4 53	2 48	-1	3.1		200	2	6	4	4	2	24.6
		SA SO	200	-7	-11	-11	-10	2.3	32.19	200	52 -5	10	0	51 2	7.6	5.19	200	35 -6	-16	-19	-14	6.8	34.6
II - 29	Bumetrizole	SA	20	-8	9	-11 -6	-10	9.3	-	2	-3 -7	0	-7	-5	4	-	20	-2	2	9	3	5.6	-
		SO	200	7	-2	8	4	5.5	-	200	-1	3	2	1	2.1	-	200	3	1	4	3	1.5	
II - 30	Camphor sulfonic acid	SA	200	-4	-12	-22	-13	9	-	200	-4	5	-2	0	4.7	-	200	-4	-1	0	-2	2.1	_
TT 21	GLI I II	SO	200	-5	8	-12	-3	10.1	-	200	11	-9	8	3	10.8	-	200	23	22	22	22	0.6	
11 - 31	Chlorhexidine	SA	200	28	35	6	23	15.1	65.79	200	13	21	16	17	4	-	200	13	7	10	10	3	-
II _ 32	Cinnamic acid	SO	200	6	0	0	2	3.5		200	5	0	-8	-1	6.6	-	200	0	-1	2	0	1.5	-
11 - 32	Cililatile acid	SA	200	61	70	36	56	17.6	31.65	200	52	36	37	42	9	21.51	200	9	10	7	9	1.5	-
II - 33	Drometrizole	SO	20	7	-4	-7	-1	7.4	-	20	2	6	8	5	3.1	-	2	8	2	4	5	3.1	-
		SA	20	-11	13	-8	-2	13.1	-	20	8	3	2	4	3.2	-	20	6	7	7	7	0.6	-
II - 34	L-Histidine	SO	200	12	15	7	11	4	-	200	4	9	-3	3	6	-	200	4	3	4	4	0.6	-
	36.1.11	SA SO	200	-7	-3	-4	-5	2.1	17.86	200	-3	-4 -1	-1	-2	38.4 1.2	96.73	200	-4	-3	-8	-5	2.6	3.53
II - 35	Methylbenzylidene camphor	SA	20	-/ -6	-3 5	-4 -4	-3 -2	5.9	-	20	-3 4	-1 7	-1 -5	2	6.2	-	20	-2	-3 -3	-8 -1	-3 -2	1	-
	*	SO	2	4	-6	1	0	5.1		20	-3	3	-3	-1	3.5	-	20	-13	-11	-17	-14	3.1	-
II - 36	Octrizole	SA	2	56	47	22	42	17.6	42.28	2	2	20	6	9	9.5	_	20	4	6	11	7	3.6	_
		SO	200	17	26	52	32	18.2	57.39	20	1	-1	4	1	2.5	-	20	10	4	6	7	3.1	-
II - 37	Octyl methacrylate	SA	200	-3	-25	-38	-22	17.7	-	20	-6	-1	-7	-5	3.2	-	20	0	0	-1	0	0.6	-
II 20	Octyl	SO	20	6	2	5	4	2.1	-	2	-4	6	2	1	5	-	20	3	2	4	3	1	-
II - 38	methoxycinnamate	SA	20	-17	-15	-11	-14	3.1	-	2	-5	2	1	-1	3.8	-	20	-5	-5	-4	-5	0.6	-
II - 39	Octyl salicylate	SO	20	0	14	2	5	7.6	-	20	1	7	7	5	3.5	-	20	-3	-3	-3	-3	0	-
5)	Cotyr Suricyrate	SA	20	12	2	1	5	6.1	-	20	7	2	-4	2	5.5	-	20	0	0	0	0	0	
II - 40	PABA	SO	200	18	-8	5	5	13	-	200	2	2	7	4	2.9	-	200	-5	-3	3	-2	4.2	-
		SA	200	10	-5	8	4	8.1	-	200	-9	-2	-1	-4	4.4	-	200	-1	0	-1	-1	0.6	
II - 41	SDS	SO	200	18	17	15	17	1.5 7	-	200	5	8	12	8	3.5	-	200	5	5	8	6	1.7	-
		SA SO	20	-16	-19	-15	-17	2.1	-	2 2	-10	-4 7	-4	-1 -2	2.9 8.6	-	200	-5	6	14 -4	-4	4.9 0.6	
II - 42	UV-571	SA	20	-16 10	-19 4	-15 15	-1 / 10	5.5	-	2	-10 2	8	-4 0	-2 3	4.2	-	2	-5 1	-4 2	-4 1	-4 1	0.6	-
	glet oxygen SA : Su	peroxide a		ND : no		13	10	3.3	-			0	U	3	4.2	-		1		1	1	0.0	

SO: Singlet oxygen SA: Superoxide anion ND: no data CV: CV (coefficient of variation) values are presented when the assay results of SA or SO were judged positive based on the mean values.

Table 12A Judgement from the Phase 2 results: Final judgement of positive when positive results were obtained in at least one of three assays

	say Validation data attern A		La	b 1			La	b 2			La	ab 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	+	I	I	+	+	+	+	+	+	+	+	+	+
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	I	I	I	I	+	+	+	+	+
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 17	Rosiglitazone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	I	I	I	I	I	I	I	I	I
II - 20	Avobenzone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

⁺: positive(Singlet oxygen results ${\ge}25$ or Superoxide results ${\ge}20$ at 200, 20 or 2 $\mu M)$ - : negative(Singlet oxygen results ${<}25$ and Superoxide results ${<}20$ at 200 $\mu M)$ 1 : inconclusive(The results does not meet the positive or negative criterion) a : Integrated judgements were made by the majority of each laboratory's final judgement.

Table 12A Judgement from the Phase 2 results: Final judgement of positive when positive results were obtained in at least one of three assays (continued)

	ay Validation data attern A		La	b 1			La	b 2			La	b 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement ^a
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
II - 24	Aspirin	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 25	Benzocaine	-	+	-	+	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	+	+	-	-	-	-	-
II - 27	Penicillin G	-	+	+	+	+	+	+	+	-	-	-	-	+
II - 28	Phenytoin	+	+	+	+	+	+	+	+	+	-	+	+	+
II - 29	Bumetrizole	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	+	+	-	+	-	+	-	+	-	-	-	-	+
II - 32	Cinnamic acid	+	+	+	+	+	+	+	+	-	-	-	-	+
II - 33	Drometrizole	I	I	I	I	I	I	I	I	I	I	I	I	Ι
II - 34	L-Histidine	+	+	+	+	+	-	+	+	+	+	+	+	+
II - 35	Methylbenzylidene camphor	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 36	Octrizole	+	+	+	+	I	+	I	+	I	I	I	I	+
II - 37	Octyl methacrylate	-	+	+	+	I	I	I	Ι	I	I	I	I	I
II - 38	Octyl methoxycinnamate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 39	Octyl salicylate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 40	PABA	-	-	=	-	-	-	-	-	-	=	=.	-	-
II - 41	SDS	I	I	I	I	I	I	I	I	=	-	-	-	I
II - 42	UV-571	I	I	I	I	I	I	I	I	I	I	I	I	I

^{+:} positive(Singlet oxygen results ${\ge}25$ or Superoxide results ${\ge}20$ at 200, 20 or 2 $\mu M)$ - : negative(Singlet oxygen results ${<}25$ and Superoxide results ${<}20$ at 200 $\mu M)$ 1 : inconclusive(The results does not meet the positive or negative criterion) a : Integrated judgements were made by the majority of each laboratory's final judgement.

Table 12B Judgement from the Phase 2 results: Final judgement based on the mean value of three assays

	say Validation data attern B		La	b 1			La	b 2			La	ıb 3		
No.	Chemicals Name	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	Integrated Judgement ^a
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	+	I	I	I	+	+	+	+	+	+	+	+	+
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	I	I	I	I	+	+	+	+	+
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 17	Rosiglitazone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	I	I	I	I	I	I	I	I	I
II - 20	Avobenzone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} positive(Singlet oxygen results \geq 25 or Superoxide results \geq 20 at 200, 20 or 2 μ M)
-: negative(Singlet oxygen results \leq 25 and Superoxide results \leq 20 at 200 μ M)
1: inconclusive(The results does not meet the positive or negative criterion)
a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 12B Judgement from the Phase 2 results: Final judgement based on the mean value of three assays (continued)

ROS ass (atlas) p	say Validation data attern B		La	b 1			La	ıb 2			La	ıb 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement ^a
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
II - 24	Aspirin	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 25	Benzocaine	-	+	-	-	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	+	-	-	-	-	-	-
II - 27	Penicillin G	-	+	+	+	+	+	+	+	-	-	-	-	+
II - 28	Phenytoin	+	+	+	+	+	+	+	+	+	-	+	+	+
II - 29	Bumetrizole	I	I	I	I	I	I	I	I	I	I	I	I	Ι
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	+	+	-	+	-	+	-	-	-	-	-	-	-
II - 32	Cinnamic acid	+	+	+	+	+	+	+	+	-	_	-	-	+
II - 33	Drometrizole	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 34	L-Histidine	+	+	+	+	+	-	+	+	+	+	+	+	+
II - 35	Methylbenzylidene camphor	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 36	Octrizole	+	+	+	+	I	+	I	I	I	I	I	I	I
II - 37	Octyl methacrylate	-	+	+	+	I	I	I	I	I	I	I	I	I
II - 38	Octyl methoxycinnamate	I	I	I	I	I	I	Ι	I	I	I	I	I	I
II - 39	Octyl salicylate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 40	PABA	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 41	SDS	I	I	I	I	I	I	I	I	-	-	-	-	I
II - 42	UV-571	I	I	I	Ι	I	I	I	I	I	I	I	I	I

^{+:} positive(Singlet oxygen results \geq 25 or Superoxide results \geq 20 at 200, 20 or 2 μ M)
-: negative(Singlet oxygen results \leq 25 and Superoxide results \leq 20 at 200 μ M)
1: inconclusive(The results does not meet the positive or negative criterion)
a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 12C Judgement from the Phase 2 results: Final judgement based on the majority of three assay results

ROS ass (atlas) p	say Validation data attern C		La	b 1			La	b 2			La	ıb 3		
	Chemicals		Assay		Final		Assay		Final		Assay		Final	Integrated Judgement ^a
No.	Name	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	+	I	I	I	+	+	+	+	+	+	+	+	+
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	I	I	I	I	+	+	+	+	+
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 17	Rosiglitazone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	I	I	I	I	I	I	I	I	I
II - 20	Avobenzone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} positive(Singlet oxygen results \geq 25 or Superoxide results \geq 20 at 200, 20 or 2 μ M)
-: negative(Singlet oxygen results \leq 25 and Superoxide results \leq 20 at 200 μ M)
1: inconclusive(The results does not meet the positive or negative criterion)
a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 12C Judgement from the Phase 2 results: Final judgement based on the majority of three assay results (continued)

	say Validation data attern C		La	b 1			La	b 2			La	ab 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
II - 24	Aspirin	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 25	Benzocaine	-	+	-	-	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	+	-	-	-	-	-	-
II - 27	Penicillin G	-	+	+	+	+	+	+	+	-	-	-	-	+
II - 28	Phenytoin	+	+	+	+	+	+	+	+	+	-	+	+	+
II - 29	Bumetrizole	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	_	-	-	-	-	-	-
II - 31	Chlorhexidine	+	+	-	+	-	+	-	-	-	-	-	-	-
II - 32	Cinnamic acid	+	+	+	+	+	+	+	+	-	-	-	-	+
II - 33	Drometrizole	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 34	L-Histidine	+	+	+	+	+	-	+	+	+	+	+	+	+
II - 35	Methylbenzylidene camphor	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 36	Octrizole	+	+	+	+	I	+	I	I	I	I	I	I	I
II - 37	Octyl methacrylate	-	+	+	+	I	I	I	I	I	I	I	I	I
II - 38	Octyl methoxycinnamate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 39	Octyl salicylate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 40	PABA	=	-	-	=	-	=	-	-	-	-	-	=	=
II - 41	SDS	I	I	I	I	I	I	I	I	-	-	-	-	I
II - 42	UV-571	I	I	I	I	I	I	I	I	I	I	I	I	I

^{+:} positive(Singlet oxygen results ${\ge}25$ or Superoxide results ${\ge}20$ at 200, 20 or 2 $\mu M)$ - : negative(Singlet oxygen results ${<}25$ and Superoxide results ${<}20$ at 200 $\mu M)$ 1 : inconclusive(The results does not meet the positive or negative criterion) a : Integrated judgements were made by the majority of each laboratory's final judgement.

Table 12D Judgement from the Phase 2 results: Final judgement based on the first assay results

	say Validation data attern D		La	b 1			La	b 2			La	b 3		
	Chemicals		Assay		Final		Assay		Final	'	Assay		Final	Integrated Judgement ^a
No.	Name	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	+	I	I	+	+	+	+	+	+	+	+	+	+
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	I	I	I	I	+	+	+	+	+
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 17	Rosiglitazone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	I	I	I	I	I	I	I	I	I
II - 20	Avobenzone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} positive(Singlet oxygen results ≥25 or Superoxide results ≥20 at 200, 20 or 2 μM) -: negative(Singlet oxygen results <25 and Superoxide anion results <20 at 200 μM) I: inconclusive(The results does not meet the positive or negative criterion) a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 12D Judgement from the Phase 2 results: Final judgement based on the first assay results (continued)

ROS ass (atlas) p	say Validation data attern D		La	b 1			La	b 2			La	ıb 3		
	Chemicals		Assay		Final		Assay		Final		Assay		Final	Integrated Judgement
No.	Name	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	
II - 24	Aspirin	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 25	Benzocaine	-	+	-	-	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	+	-	-	-	-	-	-
II - 27	Penicillin G	-	+	+	-	+	+	+	+	-	-	-	-	-
II - 28	Phenytoin	+	+	+	+	+	+	+	+	+	-	+	+	+
II - 29	Bumetrizole	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	+	+	-	+	-	+	-	-	-	-	-	-	-
II - 32	Cinnamic acid	+	+	+	+	+	+	+	+	-	-	-	-	+
II - 33	Drometrizole	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 34	L-Histidine	+	+	+	+	+	-	+	+	+	+	+	+	+
II - 35	Methylbenzylidene camphor	I	I	I	I	I	I	I	Ι	I	I	I	I	I
II - 36	Octrizole	+	+	+	+	I	+	I	Ι	I	I	I	I	I
II - 37	Octyl methacrylate	-	+	+	-	I	I	I	I	I	I	I	I	I
II - 38	Octyl methoxycinnamate	I	I	I	I	I	I	I	Ι	I	I	I	I	I
II - 39	Octyl salicylate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 40	PABA	-	-	-	-	-	_	-	-	-	-	-	-	-
II - 41	SDS	I	I	I	I	I	I	I	I	-	-	-	-	I
II - 42	UV-571	I	I	I	I	I	I	I	I	I	I	I	I	I

⁺: positive(Singlet oxygen results ${\ge}25$ or Superoxide results ${\ge}20$ at 200, 20 or 2 $\mu M)$ - : negative(Singlet oxygen results ${<}25$ and Superoxide anion results ${<}20$ at 200 $\mu M)$ I : inconclusive(The results does not meet the positive or negative criterion) a : Integrated judgements were made by the majority of each laboratory's final judgement.

Table 13A Contingency table for Phase 2 results: Final judgement of positive when positive results were obtained in at least one of three assays

T.1.1			ROS		T. 4.1
Lab 1		+	-	I	Total
DI	+	23	0	(0)	23(23)
Phototoxic	-	8	4	(7)	12(19)
Total		31	4	(7)	35(42)

Sensitivity: 100% (23/23) Specificity: 33.3% (4/12)

Positive predictivity: 74.2% (23/31) Negative predictivity: 100% (4/4)

Accuracy: 77.1% (27/35)

1.1.2			T. 4. 1		
Lab 2		+	-	I	Total
N	+	21	0	(2)	21(23)
Phototoxic	-	7	4	(8)	11(19)
Total		28	4	(10)	32(42)

Sensitivity: 100% (21/21) Specificity: 36.4% (4/11)

Positive predictivity: 75.0% (21/28) Negative predictivity: 100% (4/4)

Accuracy: 78.1% (25/32)

			T-4-1		
Lab 3		+	-	I	Total
DI	+	22	0	(1)	22(23)
Phototoxic	-	2	9	(8)	11(19)
Total		24	9	(9)	33(42)

Sensitivity: 100% (22/22) Specificity: 81.8% (9/11)

Positive predictivity: 91.7% (22/24) Negative predictivity: 100% (9/9)

Accuracy: 93.9% (31/33)

Integrated			T-4-1		
Judgemen		+	-	Ι	Total
DI	+	22	0	(1)	22(23)
Phototoxic	-	6	5	(8)	11(19)
Total		28	5	(9)	33(42)

Sensitivity: 100% (22/22) Specificity: 45.5% (5/11)

Positive predictivity: 78.6% (22/28) Negative predictivity: 100% (5/5)

Accuracy: 81.8% (27/33)

Table 13B Contingency table for Phase 2 results: Final judgement based on the mean value of three assays

T 1 1			ROS				
Lab 1		+	1	Ι	Total		
N	+	22	0	(1)	22(23)		
Phototoxic	-	7	5	(7)	12(19)		
Total		29	5	(8)	34(42)		

Sensitivity: 100% (22/22) Specificity: 41.7% (5/12)

Positive predictivity: 75.9% (22/29) Negative predictivity: 100% (5/5)

Accuracy: 79.4% (27/34)

			ROS				
Lab 2		+	-	I	Total		
DI	+	21	0	(2)	21(23)		
Phototoxic	-	4	6	(9)	10(19)		
Total		25	6	(11)	31(42)		

Sensitivity: 100% (21/21) Specificity: 60.0% (6/10)

Positive predictivity: 84.0% (21/25) Negative predictivity: 100% (6/6)

Accuracy: 87.1% (27/31)

1.1.2			T-4-1		
Lab 3		+	1	Ι	Total
	+	22	0	(1)	22(23)
Phototoxic	-	2	9	(8)	11(19)
Total		24	9	(9)	33(42)

Sensitivity: 100% (22/22) Specificity: 81.8% (9/11)

Positive predictivity: 91.7% (22/24) Negative predictivity: 100% (9/9)

Accuracy: 93.9% (31/33)

Integrated			Т-4-1		
Judgemen		+	-	I	Total
	+	22	0	(1)	22(23)
Phototoxic	-	4	6	(9)	10(19)
Total		26	6	(10)	32(42)

Sensitivity: 100% (22/22) Specificity: 60.0% (6/10)

Positive predictivity: 84.6% (22/26) Negative predictivity: 100% (6/6)

Accuracy: 87.5% (28/32)

Table 13C Contingency table for Phase 2 results: Final judgement based on the majority of three assay results

T 1 1			ROS				
Lab 1		+	1	Ι	Total		
DI	+	22	0	(1)	22(23)		
Phototoxic	-	7	5	(7)	12(19)		
Total		29	5	(8)	34(42)		

Sensitivity: 100% (22/22) Specificity: 41.7% (5/12)

Positive predictivity: 75.9% (22/29) Negative predictivity: 100% (5/5)

Accuracy: 79.4% (27/34)

Lab 2			T. 4. 1		
		+	-	I	Total
N	+	21	0	(2)	21(23)
Phototoxic	-	4	6	(9)	10(19)
Total		25	6	(11)	31(42)

Sensitivity: 100% (21/21) Specificity: 60.0% (6/10)

Positive predictivity: 84.0% (21/25) Negative predictivity: 100% (6/6)

Accuracy: 87.1% (27/31)

			T: 4:1		
Lab 3		+	-	I	Total
	+	22	0	(1)	22(23)
Phototoxic	-	2	9	(8)	11(19)
Total		24	9	(9)	33(42)

Sensitivity: 100% (22/22) Specificity: 81.8% (9/11)

Positive predictivity: 91.7% (22/24) Negative predictivity: 100% (9/9)

Accuracy: 93.9% (31/33)

Integrated	l		Т-4-1		
Judgemen		+	-	I	Total
+		22	0	(1)	22(23)
Phototoxic	-	4	6	(9)	10(19)
Total		26	6	(10)	32(42)

Sensitivity: 100% (22/22) Specificity: 60.0% (6/10)

Positive predictivity: 84.6% (22/26) Negative predictivity: 100% (6/6)

Accuracy: 87.5% (28/32)

Table 13D Contingency table for Phase 2 results: Final judgement based on the first assay results

			T. 4.1		
Lab 1		+	-	I	Total
	+	23	0	(0)	23(23)
Phototoxic	-	5	7	(7)	12(19)
Total		28	7	(7)	35(42)

Sensitivity: 100% (23/23) Specificity: 58.3% (7/12)

Positive predictivity: 82.1% (23/28) Negative predictivity: 100% (7/7)

Accuracy: 85.7% (30/35)

1.1.2			ROS		T. 4.1
Lab 2		+	-	I	Total
N	+	21	0	(2)	21(23)
Phototoxic	-	4	6	(9)	10(19)
Total	25	6	(11)	31(42)	

Sensitivity: 100% (21/21) Specificity: 60.0% (6/10)

Positive predictivity: 84.0% (21/25) Negative predictivity: 100% (6/6)

Accuracy: 87.1% (27/31)

1.1.2			ROS		T (1
Lab 3		+	1	I	Total
Di	+	22	0	(1)	22(23)
Phototoxic	-	2	9	(8)	11(19)
Total	24	9	(9)	33(42)	

Sensitivity: 100% (22/22) Specificity: 81.8% (9/11)

Positive predictivity: 91.7% (22/24) Negative predictivity: 100% (9/9)

Accuracy: 93.9% (31/33)

Integrated			ROS		TD 4 1
Judgemen		+	-	Ι	Total
DI	+	22	0	(1)	22(23)
Phototoxic	-	3	7	(9)	10(19)
Total		25	7	(10)	32(42)

Sensitivity: 100% (22/22) Specificity: 70.0% (7/10)

Positive predictivity: 88.0% (22/25) Negative predictivity: 100% (7/7)

Accuracy: 90.6% (29/32)

Table 14A Judgement from the Phase 1 and 2 results: Final judgement of positive when positive results were obtained in at least one of three assays

	say Validation data pattern A		La	ıb 1			La	b 2			La	ıb 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement ^a
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	+	I	I	+	+	+	+	+	+	+	+	+	+
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
I – 5	Diclofenac	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	I	I	I	I	+	+	+	+	+
I - 1	5-FU	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketopofen	+	+	+	+	+	+	+	+	+	+	+	+	+
I – 9	Levofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I – 11	Omeprazole	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 17	Rosiglitazone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	I	I	I	I	I	I	I	I	I
II - 20	Avobenzone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} positive(Singlet oxygen results \geq 25 or Superoxide results \geq 20 at 200, 20 or 2 μ M)
-: negative(Singlet oxygen results \leq 25 and Superoxide results \leq 20 at 200 μ M)
1: inconclusive(The results does not meet the positive or negative criterion)
a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 14A Judgement from the Phase 1 and 2 results: Final judgement of positive when positive results were obtained in at least one of three assays (continued)

	ay Validation data attern A		La	b 1			La	b 2			La	ab 3		
	Chemicals		Assay		Final judg-	<u> </u>	Assay		Final judg-	<u> </u>	Assay		Final judg-	Integrated Judgement ^a
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
II - 24	Aspirin	-	-	-	=	-	-	-	-	-	-	-	-	-
II - 25	Benzocaine	-	+	-	+	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	+	+	-	-	-	-	-
II - 27	Penicillin G	-	+	+	+	+	+	+	+	-	-	-	-	+
II - 28	Phenytoin	+	+	+	+	+	+	+	+	+	-	+	+	+
II - 29	Bumetrizole	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	_	-	-	-	-	-	-
II - 31	Chlorhexidine	+	+	-	+	-	+	-	+	-	-	-	-	+
II - 32	Cinnamic acid	+	+	+	+	+	+	+	+	-	-	-	-	+
II - 33	Drometrizole	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 34	L-Histidine	+	+	+	+	+	-	+	+	+	+	+	+	+
II - 35	Methylbenzylidene camphor	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 36	Octrizole	+	+	+	+	I	+	I	+	I	I	I	I	+
II - 37	Octyl methacrylate	-	+	+	+	I	I	I	I	I	I	I	I	I
II - 38	Octyl methoxycinnamate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 39	Octyl salicylate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 40	PABA	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 41	SDS	I	I	I	I	I	I	I	I	-	-	-	_	I
II - 42	UV-571	I	I	I	I	I	I	I	I	I	I	I	I	I

^{+:} positive(Singlet oxygen results \geq 25 or Superoxide results \geq 20 at 200, 20 or 2 μ M)
-: negative(Singlet oxygen results \leq 25 and Superoxide results \leq 20 at 200 μ M)
1: inconclusive(The results does not meet the positive or negative criterion)
a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 14B Judgement from the Phase 1 and 2 results: Final judgement based on the mean value of three assays

	say Validation data pattern B		La	ab 1			La	ıb 2			La	ab 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement ^a
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	+	I	I	I	+	+	+	+	+	+	+	+	+
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
I – 5	Diclofenac	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	I	I	I	I	+	+	+	+	+
I - 1	5-FU	-	-	-	-	-	_	_	-	-	-	-	-	-
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketopofen	+	+	+	+	+	+	+	+	+	+	+	+	+
I – 9	Levofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I – 11	Omeprazole	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 17	Rosiglitazone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	I	I	I	I	I	I	I	I	I
II - 20	Avobenzone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} positive(Singlet oxygen results ${\ge}25$ or Superoxide results ${\ge}20$ at 200, 20 or 2 $\mu M)$ - : negative(Singlet oxygen results ${<}25$ and Superoxide results ${<}20$ at 200 $\mu M)$ 1 : inconclusive(The results does not meet the positive or negative criterion) a : Integrated judgements were made by the majority of each laboratory's final judgement.

Table 14B Judgement from the Phase 1 and 2 results: Final judgement based on the mean value of three assays (continued)

	say Validation data attern B		La	b 1			La	b 2			La	b 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement ^a
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
II - 24	Aspirin	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 25	Benzocaine	-	+	-	-	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	+	-	-	-	-	-	-
II - 27	Penicillin G	-	+	+	+	+	+	+	+	-	-	-	-	+
II - 28	Phenytoin	+	+	+	+	+	+	+	+	+	-	+	+	+
II - 29	Bumetrizole	I	I	I	Ι	I	I	I	I	I	I	I	I	I
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	+	+	-	+	-	+	-	-	-	-	-	-	-
II - 32	Cinnamic acid	+	+	+	+	+	+	+	+	-	-	-	-	+
II - 33	Drometrizole	I	I	I	I	I	I	I	Ι	I	I	I	I	I
II - 34	L-Histidine	+	+	+	+	+	-	+	+	+	+	+	+	+
II - 35	Methylbenzylidene camphor	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 36	Octrizole	+	+	+	+	I	+	I	I	I	I	I	I	I
II - 37	Octyl methacrylate	-	+	+	+	I	I	I	I	I	I	I	I	I
II - 38	Octyl methoxycinnamate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 39	Octyl salicylate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 40	PABA	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 41	SDS	I	I	I	I	I	I	I	I	-	-	-	=	I
II - 42	UV-571	I	I	I	I	I	I	I	I	I	I	I	I	I

^{+:} positive(Singlet oxygen results ${\ge}25$ or Superoxide results ${\ge}20$ at 200, 20 or 2 $\mu M)$ - : negative(Singlet oxygen results ${<}25$ and Superoxide results ${<}20$ at 200 $\mu M)$ 1 : inconclusive(The results does not meet the positive or negative criterion) a : Integrated judgements were made by the majority of each laboratory's final judgement.

Table 14C Judgement from the Phase 1 and 2 results: Final judgement based on the majority of three assay results

ROS as (atlas) p	say Validation data pattern C		La	b 1			La	ıb 2			La	b 3		
	Chemicals		Assay		Final		Assay		Final		Assay		Final	Integrated Judgement ^a
No.	Name	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	+	I	I	I	+	+	+	+	+	+	+	+	+
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
I – 5	Diclofenac	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	I	I	I	I	+	+	+	+	+
I - 1	5-FU	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketopofen	+	+	+	+	+	+	+	+	+	+	+	+	+
I – 9	Levofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I – 11	Omeprazole	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 17	Rosiglitazone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	I	I	I	I	I	I	I	I	I
II - 20	Avobenzone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

⁺: positive(Singlet oxygen results ${\ge}25$ or Superoxide results ${\ge}20$ at 200, 20 or 2 $\mu M)$ - : negative(Singlet oxygen results ${<}25$ and Superoxide results ${<}20$ at 200 $\mu M)$ 1 : inconclusive(The results does not meet the positive or negative criterion) a : Integrated judgements were made by the majority of each laboratory's final judgement.

Table 14C Judgement from the Phase 1 and 2 results: Final judgement based on the majority of three assay results (continued)

-					`									
	say Validation data vattern C		La	b 1			La	ıb 2			La	ıb 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement ^a
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
II - 24	Aspirin	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 25	Benzocaine	-	+	-	-	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	+	-	-	-	-	-	-
II - 27	Penicillin G	-	+	+	+	+	+	+	+	-	-	-	-	+
II - 28	Phenytoin	+	+	+	+	+	+	+	+	+	-	+	+	+
II - 29	Bumetrizole	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	+	+	-	+	-	+	-	-	-	-	-	-	-
II - 32	Cinnamic acid	+	+	+	+	+	+	+	+	-	-	-	-	+
II - 33	Drometrizole	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 34	L-Histidine	+	+	+	+	+	-	+	+	+	+	+	+	+
II - 35	Methylbenzylidene camphor	I	I	I	I	I	I	Ι	I	I	I	I	I	I
II - 36	Octrizole	+	+	+	+	I	+	I	I	I	I	I	I	I
II - 37	Octyl methacrylate	-	+	+	+	I	I	I	I	I	I	I	I	I
II - 38	Octyl methoxycinnamate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 39	Octyl salicylate	I	I	Ι	I	I	I	I	I	I	I	I	I	I
II - 40	PABA	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 41	SDS	I	I	I	I	I	I	I	I	=	-	-	=	I
II - 42	UV-571	I	I	I	I	I	I	I	I	I	I	I	I	I

^{+:} positive(Singlet oxygen results ${\ge}25$ or Superoxide results ${\ge}20$ at 200, 20 or 2 $\mu M)$ - : negative(Singlet oxygen results ${<}25$ and Superoxide results ${<}20$ at 200 $\mu M)$ 1 : inconclusive(The results does not meet the positive or negative criterion) a : Integrated judgements were made by the majority of each laboratory's final judgement. Compound Numbers from the phase1 study were shown in the brackets.

Table 14D Judgement from the Phase 1 and 2 results: Final judgement based on the first assay results

	say Validation data attern D		La	ıb 1			La	ıb 2			La	ab 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgement
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	+	I	I	+	+	+	+	+	+	+	+	+	+
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
I – 5	Diclofenac	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	I	I	I	I	+	+	+	+	+
I - 1	5-FU	-	-	-	-	-	-	_	-	-	-	-	-	-
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketopofen	+	+	+	+	+	+	+	+	+	+	+	+	+
I – 9	Levofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
I – 11	Omeprazole	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 17	Rosiglitazone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	I	I	I	I	I	I	I	I	I
II - 20	Avobenzone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} positive(Singlet oxygen results ${\ge}25$ or Superoxide results ${\ge}20$ at 200, 20 or 2 $\mu M)$ - : negative(Singlet oxygen results ${<}25$ and Superoxide anion results ${<}20$ at 200 $\mu M)$ I : inconclusive(The results does not meet the positive or negative criterion) a : Integrated judgements were made by the majority of each laboratory's final judgement. Compound Numbers from the phase1 study were shown in the brackets.

Table 14D Judgement from the Phase 1 and 2 results: Final judgement based on the first assay results (continued)

ROS ass (atlas) p	say Validation data attern D		La	b 1			La	b 2			La	ıb 3		
	Chemicals		Assay		Final		Assay		Final		Assay		Final	Integrated Judgement ^a
No.	Name	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	
II - 24	Aspirin	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 25	Benzocaine	-	+	-	-	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	+	-	-	-	-	-	-
II - 27	Penicillin G	-	+	+	-	+	+	+	+	-	-	-	-	-
II - 28	Phenytoin	+	+	+	+	+	+	+	+	+	-	+	+	+
II - 29	Bumetrizole	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	+	+	-	+	-	+	-	-	-	-	-	-	-
II - 32	Cinnamic acid	+	+	+	+	+	+	+	+	-	-	-	-	+
II - 33	Drometrizole	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 34	L-Histidine	+	+	+	+	+	-	+	+	+	+	+	+	+
II - 35	Methylbenzylidene camphor	I	I	I	I	I	I	Ι	I	I	I	I	I	I
II - 36	Octrizole	+	+	+	+	I	+	I	I	I	I	I	I	I
II - 37	Octyl methacrylate	-	+	+	-	I	I	I	I	I	I	I	I	I
II - 38	Octyl methoxycinnamate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 39	Octyl salicylate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 40	PABA	-	-	-	-	-	-	-	=	-	-	-	-	-
II - 41	SDS	I	I	I	I	I	I	I	I	=	-	-	-	I
II - 42	UV-571	I	I	I	I	I	I	Ι	I	I	I	I	I	I

⁺: positive(Singlet oxygen results ${\ge}25$ or Superoxide results ${\ge}20$ at 200, 20 or 2 $\mu M)$ - : negative(Singlet oxygen results ${<}25$ and Superoxide anion results ${<}20$ at 200 $\mu M)$ 1 : inconclusive(The results does not meet the positive or negative criterion) a : Integrated judgements were made by the majority of each laboratory's final judgement. Compound Numbers from the phase1 study were shown in the brackets.

Table 15A Contingency table for Phase 1 and 2 results: Final judgement of positive when positive results were obtained in at least one of three assays

Lab 1			т. т. 1		
		+	1	Ι	Total
	+	26	1	(0)	27(27)
Phototoxic	-	8	4	(7)	12(19)
Total		34	5	(7)	39(46)

Sensitivity: 96.3% (26/27) Specificity: 33.3% (4/12)

Positive predictivity: 76.5% (26/34) Negative predictivity: 80.0% (4/5)

Accuracy: 76.9% (30/39)

Lab 2			T. 4.1		
		+	-	I	Total
DI	+	24	1	(2)	25(27)
Phototoxic	-	7	4	(8)	11(19)
Total		31	5	(10)	36(46)

Sensitivity: 96.0% (24/25) Specificity: 36.4% (4/11)

Positive predictivity: 77.4% (24/31) Negative predictivity: 80.0% (4/5)

Accuracy: 77.8% (28/36)

1.1.2			Total		
Lab 3		+	1	Ι	Total
	+	25	1	(1)	26(27)
Phototoxic	-	2	9	(8)	11(19)
Total		27	10	(9)	37(46)

Sensitivity: 96.2% (25/26) Specificity: 81.8% (9/11)

Positive predictivity: 92.6% (25/27) Negative predictivity: 90.0% (9/10)

Accuracy: 91.9% (34/37)

Integrated Judgement			T. 4.1		
		+	ı	Ι	Total
	+	25	1	(1)	26(27)
Phototoxic	otoxic	6	5	(8)	11(19)
Total		31	6	(9)	37(46)

Sensitivity: 96.2% (25/26) Specificity: 45.5% (5/11)

Positive predictivity: 80.7% (25/31) Negative predictivity: 83.3% (5/6)

Accuracy: 81.1% (30/37)

Table 15B Contingency table for Phase 1 and 2 results: Final judgement based on the mean value of three assays

Lab 1			ROS				
		+	1	Ι	Total		
	+	25	1	(1)	26(27)		
Phototoxic	-	7	5	(1)	12(19)		
Total		32	6	(8)	38(46)		

Sensitivity: 96.2% (25/26) Specificity: 41.7% (5/12)

Positive predictivity: 78.1% (25/32) Negative predictivity: 83.3% (5/6)

Accuracy: 79.0% (30/38)

Lab 2			T. 4. 1		
		+	-	I	Total
	+	24	1	(2)	25(27)
Phototoxic	-	4	6	(9)	10(19)
Total		28	7	(11)	35(46)

Sensitivity: 96.0% (24/25) Specificity: 60.0% (6/10)

Positive predictivity: 85.7% (24/28) Negative predictivity: 85.7% (6/7)

Accuracy: 85.7% (30/35)

Lab 3			T-4-1		
		+	-	I	Total
	+	25	1	(1)	26(27)
Phototoxic	-	2	9	(8)	11(19)
Total		27	10	(9)	37(46)

Sensitivity: 96.2% (25/26) Specificity: 81.8% (9/11)

Positive predictivity: 92.6% (25/27) Negative predictivity: 90.0% (9/10)

Accuracy: 91.9% (34/37)

Integrated			T. 4.1		
Judgement		+	-	I	Total
	+	25	1	(1)	26(27)
Phototoxic	-	4	6	(1)	10(19)
Total		29	7	(10)	36(46)

Sensitivity: 96.2% (25/26) Specificity: 60.0% (6/10)

Positive predictivity: 86.2% (25/29) Negative predictivity: 85.7% (6/7)

Accuracy: 86.1% (31/36)

Table 15C Contingency table for Phase 1 and 2 results: Final judgement based on the majority of three assay results

Lab 1			Т-4-1		
		+	1	Ι	Total
	+	25	1	(1)	26(27)
Phototoxic	-	7	5	(7)	12(19)
Total		32	6	(8)	38(46)

Sensitivity: 96.2% (25/26) Specificity: 41.7% (5/12)

Positive predictivity: 78.1% (25/32) Negative predictivity: 83.3% (5/6)

Accuracy: 79.0% (30/38)

Lab 2			T. 4.1		
		+	-	I	Total
N	+	24	1	(2)	25(27)
Phototoxic	-	4	6	(9)	10(19)
Total		28	7	(11)	35(46)

Sensitivity: 96.0% (24/25) Specificity: 60.0% (6/10)

Positive predictivity: 85.7% (24/28) Negative predictivity: 85.7% (6/7)

Accuracy: 85.7% (30/35)

Lab 3			ROS			
		+	-	Ι	Total	
	+	25	1	(1)	26(27)	
Phototoxic	-	2	9	(8)	11(19)	
Total		27	10	(9)	37(46)	

Sensitivity: 96.2% (25/26) Specificity: 81.8% (9/11)

Positive predictivity: 92.6% (25/27) Negative predictivity: 90.0% (9/10)

Accuracy: 91.9% (34/37)

Integrated		ROS		T-4-1	
Judgement		+	-	I	Total
	+	25	1	(1)	26(27)
Phototoxic	-	4	6	(1) (9)	10(19)
Total		29	7	(10)	36(46)

Sensitivity: 96.2% (25/26) Specificity: 60.0% (6/10)

Positive predictivity: 86.2% (25/29) Negative predictivity: 85.7% (6/7)

Accuracy: 86.1% (31/36)

Table 15D Contingency table for Phase 1 and 2 results: Final judgement based on the first assay results

Lab 1			T. 4.1		
		+	1	Ι	Total
+		26	1	(0)	27(27)
Phototoxic	-	5	7	(7)	12(19)
Total		31	8	(7)	39(46)

Sensitivity: 96.3% (26/27) Specificity: 58.3% (7/12)

Positive predictivity: 83.9% (26/31) Negative predictivity: 87.5% (7/8)

Accuracy: 84.6% (33/39)

Lab 2			T.4.1		
		+	-	I	Total
DI	+	24	1	(2)	25(27)
Phototoxic	-	4	6	(9)	10(19)
Total		28	7	(11)	35(46)

Sensitivity: 96.0% (24/25) Specificity: 60.0% (6/10)

Positive predictivity: 85.7% (24/28) Negative predictivity: 85.7% (6/7)

Accuracy: 85.7% (30/35)

Lab 3			T. 4.1		
		+	1	Ι	Total
N	+	25	1	(1)	26(27)
Phototoxic	-	2	9	(8)	11(19)
Total		27	10	(9)	37(46)

Sensitivity: 96.2% (25/26) Specificity: 81.8% (9/11)

Positive predictivity: 92.6% (25/27) Negative predictivity: 90.0% (9/10)

Accuracy: 91.9% (34/37)

Integrated Judgement			T . 1		
		+	-	I	Total
DI	+	25	1	(1)	26(27)
Phototoxic	-	3	7	(9)	10(19)
Total		28	8	(10)	36(46)

Sensitivity: 96.2% (25/26) Specificity: 70.0% (7/10)

Positive predictivity: 89.3% (25/28) Negative predictivity: 87.5% (7/8)

Accuracy: 88.9% (32/36)

Table 16-1 Contingency table for Phase 1 results at 20 μM

Concentration: 20 µM

Lab 1		Draft criteria for the final judgement a				
Lao i	A	В	С	D		
Sensitivity	83.3%	83.3%	83.3%	83.3%		
	(10/12)	(10/12)	(10/12)	(10/12)		
Specificity	100%	100%	100%	100%		
	(1/1)	(1/1)	(1/1)	(1/1)		
Positive predictivity	100%	100%	100%	100%		
	(10/10)	(10/10)	(10/10)	(10/10)		
Negative predictivity	33.3%	33.3%	33.3%	33.3%		
	(1/3)	(1/3)	(1/3)	(1/3)		
Accuracy	84.6%	84.6%	84.6%	84.6%		
	(11/13)	(11/13)	(11/13)	(11/13)		

Lab 2		Draft criteria for the final judgement a				
Lau 2	A	В	С	D		
Sensitivity	83.3%	83.3%	83.3%	83.3%		
	(10/12)	(10/12)	(10/12)	(10/12)		
Specificity	100%	100%	100%	100%		
	(1/1)	(1/1)	(1/1)	(1/1)		
Positive predictivity	100%	100%	100%	100%		
	(10/10)	(10/10)	(10/10)	(10/10)		
Negative predictivity	33.3%	33.3%	33.3%	33.3%		
	(1/3)	(1/3)	(1/3)	(1/3)		
Accuracy	84.6%	84.6%	84.6%	84.6%		
	(11/13)	(11/13)	(11/13)	(11/13)		

Lab 3		Draft criteria for the final judgement ^a				
Lau 3	A	В	С	D		
Sensitivity	83.3%	83.3%	75.0%	75.0%		
	(10/12)	(10/12)	(9/12)	(9/12)		
Specificity	100%	100%	100%	100%		
	(1/1)	(1/1)	(1/1)	(1/1)		
Positive predictivity	100%	100%	100%	100%		
	(10/10)	(10/10)	(9/9)	(9/9)		
Negative predictivity	33.3%	33.3%	25.0%	25.0%		
	(1/3)	(1/3)	(1/4)	(1/4)		
Accuracy	84.6%	84.6%	76.9%	76.9%		
	(11/13)	(11/13)	(10/13)	(10/13)		

a : A : Final judgement of positive when positive results were obtained in at least one of three assays.

B : Final judgement based on the mean value of three assays.

C : Final judgement based on the majority of three assay results

D : Final judgement based on the first assay results

Table 16-2 Contingency table for Phase 1 results at 200 μM

Concentration: 200 µM

Lab 1	Draft criteria for the final judgement a					
Lau I	A	В	С	D		
Sensitivity	91.7%	91.7%	91.7%	91.7%		
	(11/12)	(11/12)	(11/12)	(11/12)		
Specificity	100%	100%	100%	100%		
	(1/1)	(1/1)	(1/1)	(1/1)		
Positive predictivity	100%	100%	100%	100%		
	(11/11)	(11/11)	(11/11)	(11/11)		
Negative predictivity	50.0%	50.0%	50.0%	50.0%		
	(1/2)	(1/2)	(1/2)	(1/2)		
Accuracy	92.3%	92.3%	92.3%	92.3%		
	(12/13)	(12/13)	(12/13)	(12/13)		

Lab 2	Draft criteria for the final judgement ^a				
Lao 2	A	В	С	D	
Sensitivity	91.7%	91.7%	91.7%	91.7%	
	(11/12)	(11/12)	(11/12)	(11/12)	
Specificity	100%	100%	100%	100%	
	(1/1)	(1/1)	(1/1)	(1/1)	
Positive predictivity	100%	100%	100%	100%	
	(11/11)	(11/11)	(11/11)	(11/11)	
Negative predictivity	50.0%	50.0%	50.0%	50.0%	
	(1/2)	(1/2)	(1/2)	(1/2)	
Accuracy	92.3%	92.3%	92.3%	92.3%	
	(12/13)	(12/13)	(12/13)	(12/13)	

Lab 3	Draft criteria for the final judgement a				
Lao 3	A	В	С	D	
Sensitivity	91.7%	91.7%	91.7%	91.7%	
	(11/12)	(11/12)	(11/12)	(11/12)	
Specificity	100%	100%	100%	100%	
	(1/1)	(1/1)	(1/1)	(1/1)	
Positive predictivity	100%	100%	100%	100%	
	(11/11)	(11/11)	(11/11)	(11/11)	
Negative predictivity	50.0%	50.0%	50.0%	50.0%	
	(1/2)	(1/2)	(1/2)	(1/2)	
Accuracy	92.3%	92.3%	92.3%	92.3%	
	(12/13)	(12/13)	(12/13)	(12/13)	

a : A : Final judgement of positive when positive results were obtained in at least one of three assays.

B : Final judgement based on the mean value of three assays.

C : Final judgement based on the majority of three assay results

D : Final judgement based on the first assay results

Table 16-3 Contingency table for Phase 2 results

I ob 1	Draft criteria for the final judgement ^a				
Lab 1	A	В	С	D	
Sensitivity	100%	100%	100%	100%	
	(23/23)	(22/22)	(22/22)	(23/23)	
Specificity	33.3%	41.7%	41.7%	58.3%	
	(4/12)	(5/12)	(5/12)	(7/12)	
Positive predictivity	74.2%	75.9%	75.9%	82.1%	
	(23/31)	(22/29)	(22/29)	(23/28)	
Negative predictivity	100%	100%	100%	100%	
	(4/4)	(5/5)	(5/5)	(7/7)	
Accuracy	77.1%	79.4%	79.4%	85.7%	
	(27/35)	(27/34)	(27/34)	(30/35)	

Lab 2		Draft criteria for the final judgement a				
Lau 2	A	В	С	D		
Sensitivity	100%	100%	100%	100%		
	(21/21)	(21/21)	(21/21)	(21/21)		
Specificity	36.4%	60.0%	60.0%	60.0%		
	(4/11)	(6/10)	(6/10)	(6/10)		
Positive predictivity	75.0%	84.0%	84.0%	84.0%		
	(21/28)	(21/25)	(21/25)	(21/25)		
Negative predictivity	100%	100%	100%	100%		
	(4/4)	(6/6)	(6/6)	(6/6)		
Accuracy	78.1%	87.1%	87.1%	87.1%		
	(25/32)	(27/31)	(27/31)	(27/31)		

Lab 3		Draft criteria for th	ne final judgement a	
Lao 3	A	В	С	D
Sensitivity	100%	100%	100%	100%
	(22/22)	(22/22)	(22/22)	(22/22)
Specificity	81.8%	81.8%	81.8%	81.8%
	(9/11)	(9/11)	(9/11)	(9/11)
Positive predictivity	91.7%	91.7%	91.7%	91.7%
	(22/24)	(22/24)	(22/24)	(22/24)
Negative predictivity	100%	100%	100%	100%
	(9/9)	(9/9)	(9/9)	(9/9)
Accuracy	93.9%	93.9%	93.9%	93.9%
	(31/33)	(31/33)	(31/33)	(31/33)

a : A : Final judgement of positive when positive results were obtained in at least one of three assays.

B : Final judgement based on the mean value of three assays.

C : Final judgement based on the majority of three assay results

D : Final judgement based on the first assay results

Table 16-4 Contingency table for Phase 1 and 2 results

Tal-1		Draft criteria for th	ne final judgement a	
Lab 1	A	В	С	D
Sensitivity	96.3%	96.2%	96.2%	96.3%
	(26/27)	(25/26)	(25/26)	(26/27)
Specificity	33.3%	41.7%	41.7%	58.3%
	(4/12)	(5/12)	(5/12)	(7/12)
Positive predictivity	76.5%	78.1%	78.1%	83.9%
	(26/34)	(25/32)	(25/32)	(26/31)
Negative predictivity	80.0%	83.3%	83.3%	87.5%
	(4/5)	(5/6)	(5/6)	(7/8)
Accuracy	76.9%	79.0%	79.0%	84.6%
	(30/39)	(30/38)	(30/38)	(33/39)

Lab 2		Draft criteria for th	ne final judgement a	
Lau 2	A	В	С	D
Sensitivity	96.0%	96.0%	96.0%	96.0%
	(24/25)	(24/25)	(24/25)	(24/25)
Specificity	36.4%	60.0%	60.0%	60.0%
	(4/11)	(6/10)	(6/10)	(6/10)
Positive predictivity	77.4%	85.7%	85.7%	85.7%
	(24/31)	(24/28)	(24/28)	(24/28)
Negative predictivity	80.0%	85.7%	85.7%	85.7%
	(4/5)	(6/7)	(6/7)	(6/7)
Accuracy	77.8%	85.7%	85.7%	85.7%
	(28/36)	(30/35)	(30/35)	(30/35)

Lab 3		Draft criteria for th	ne final judgement a	
Lau 3	A	В	С	D
Sensitivity	96.2%	96.2%	96.2%	96.2%
	(25/26)	(25/26)	(25/26)	(25/26)
Specificity	81.8%	81.8%	81.8%	81.8%
	(9/11)	(9/11)	(9/11)	(9/11)
Positive predictivity	92.6%	92.6%	92.6%	92.6%
	(25/27)	(25/27)	(25/27)	(25/27)
Negative predictivity	90.0%	90.0%	90.0%	90.0%
	(9/10)	(9/10)	(9/10)	(9/10)
Accuracy	91.9%	91.9%	91.9%	91.9%
	(34/37)	(34/37)	(34/37)	(34/37)

a : A : Final judgement of positive when positive results were obtained in at least one of three assays.

B : Final judgement based on the mean value of three assays.

C : Final judgement based on the majority of three assay results

D : Final judgement based on the first assay results

Table 17 Contingency table for integrated judgement results

Phase 1		Draft criteria for th	ne final judgement a	
$(200 \mu M)$	A b	В	С	D
Sensitivity	91.7%	91.7%	91.7%	91.7%
	(11/12)	(11/12)	(11/12)	(11/12)
Specificity	100%	100%	100%	100%
	(1/1)	(1/1)	(1/1)	(1/1)
Positive predictivity	100%	100%	100%	100%
	(11/11)	(11/11)	(11/11)	(11/11)
Negative predictivity	50.0%	50.0%	50.0%	50.0%
	(1/2)	(1/2)	(1/2)	(1/2)
Accuracy	92.3%	92.3%	92.3%	92.3%
	(12/13)	(12/13)	(12/13)	(12/13)

Phase 2		Draft criteria for th	ne final judgement a	
Pliase 2	A c	В	С	D
Sensitivity	100%	100%	100%	100%
	(22/22)	(22/22)	(22/22)	(22/22)
Specificity	45.5%	60.0%	60.0%	70.0%
	(5/11)	(6/10)	(6/10)	(7/10)
Positive predictivity	78.6%	84.6%	84.6%	88.0%
	(22/28)	(22/26)	(22/26)	(22/25)
Negative predictivity	100%	100%	100%	100%
	(5/5)	(6/6)	(6/6)	(7/7)
Accuracy	81.8%	87.5%	87.5%	90.6%
	(27/33)	(28/32)	(28/32)	(29/32)

Phase 1 and 2		Draft criteria for th	ne final judgement a	
Phase I and 2	A d	В	С	D
Consitivity	96.2%	96.2%	96.2%	96.2%
Sensitivity	(25/26)	(25/26)	(25/26)	(25/26)
Charificity	45.5%	60.0%	60.0%	70.0%
Specificity	(5/11)	(6/10)	(6/10)	(7/10)
Danition and distinity	80.7%	86.2%	86.2%	89.3%
Positive predictivity	(25/31)	(25/29)	(25/29)	(25/28)
Nagativa pradictivity	83.3%	85.7%	85.7%	87.5%
Negative predictivity	(5/6)	(6/7)	(6/7)	(7/8)
Accuracy	81.1%	86.1%	86.1%	88.9%
Accuracy	(30/37)	(31/36)	(31/36)	(32/36)
Integrated judgements were made	by the majority of each la	aboratory's final judge	ment.	
a: A: Final judgement of positive	when positive results we	re obtained in at least	one of three assays.	
B: Final judgement based on th				
C : Final judgement based on th		results		
D : Final judgement based on th	e first assay results			
b : See, tables 6A to 6D				
c : See, tables 12A to 12D				
d : See, tables 14A to 14D				

Table 18A Secondary data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: The highest criteria among the three assay results was selected as the final judgement

No.	Chemicals							ıb 2						
No.			Assay		Final		Assay		Final		Assay		Final	Integrated Judgement ^a
	Name	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	(+)	(-)	(-)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	ND
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	(-)	(-)	(-)	(-)	+	+	+	+	+
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 17	Rosiglitazone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	+
II - 20	Avobenzone	+	+	+	+	(±)	(±)	(±)	(±)	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} Photoreactive (Singlet oxygen results ≥25 or Superoxide results ≥70 at 200 or 20 μM)

±: Weakly photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥20 and less than 70 at 200 or 20 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 200 or 20 μM)

(+):Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 or Superoxide results ≥70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(±): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results ≤25 and Superoxide results ≥20 and less than 70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

^{(-):}Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

I: inconclusive(The results does not meet the photoreactive, weakly photoreactive or Non-photoreactive criterion)

ND: not determined due to precipitation

a : Integrated judgements were made by the majority of each laboratory's final judgement.

Table 18A Secondary data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: The highest criteria among the three assay results was selected as the final judgement (continued)

ROS ass (atlas) p	say Validation data attern A		La	ıb 1			La	b 2			La	ıb 3		Totometed
No.	Chemicals Name	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	Integrated Judgement ^a
II - 24	Aspirin	-	_			-				-				
II - 25	Benzocaine	-	±	-	±	_	-	_	_	_	_	_	-	_
II - 26	Erythromycin	-	-	-	-	-	-	±	±	-	-	-	-	-
II - 27	Penicillin G	-	±	±	±	±	±	±	±	-	-	-	-	±
II - 28	Phenytoin	±	±	±	±	±	±	±	±	±	-	±	±	±
II - 29	Bumetrizole	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	±	±	-	±	-	±	-	±	-	-	-	-	±
II - 32	Cinnamic acid	±	+	±	+	±	±	±	±	-	-	-	-	I
II - 33	Drometrizole	-	-	-	-	_	-	-	-	(-)	(-)	(-)	(-)	-
II - 34	L-Histidine	±	+	±	+	±	-	±	±	±	±	±	±	±
II - 35	Methylbenzylidene camphor	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 36	Octrizole	(±)	(±)	(±)	(±)	(-)	(±)	(-)	(±)	-	-	-	-	-
II - 37	Octyl methacrylate	-	+	+	+	-	-	-	-	-	-	-	-	-
II - 38	Octyl methoxycinnamate	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 39	Octyl salicylate	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 40	PABA	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 41	SDS	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 42	UV-571	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	ND

^{+:} Photoreactive (Singlet oxygen results ≥25 or Superoxide results ≥70 at 200 or 20 μM)

±: Weakly photoreactive (Singlet oxygen results <25 and Superoxide results ≥20 and less than 70 at 200 or 20 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 200 or 20 μM)

(+):Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 or Superoxide results ≥70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(±): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20 and less than 20μM and 20μM and 20μM and 20μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20 and less than 20μM and 20μM

^{(-):} Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-):Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

1. inconclusive(The results does not meet the photoreactive, weakly photoreactive or Non-photoreactive criterion)

ND: not determined due to precipitation a : Integrated judgements were made by the majority of each laboratory's final judgement.

Table 18B Secondary data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the mean value of three assays

ROS ass (atlas) p	say Validation data attern B		La	ıb 1			La	ıb 2						
	Chemicals		Assay		Final		Assay		Final		Assay		Final	Integrated Judgement
No.	Name	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	(+)	(-)	(-)	(-)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	ND
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	(-)	(-)	(-)	(-)	+	+	+	+	+
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 17	Rosiglitazone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	+
II - 20	Avobenzone	+	+	+	+	(±)	(±)	(±)	(±)	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} Photoreactive (Singlet oxygen results ≥25 or Superoxide results ≥70 at 200 or 20 μM)

±: Weakly photoreactive (Singlet oxygen results <25 and Superoxide results ≥20 and less than 70 at 200 or 20 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 200 or 20 μM)

(+):Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 or Superoxide results ≥70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(±): Ros assay was conducted at 12 μM due to precipitation at 20μM and 200μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20 and less than 70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-):Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20 and less than 70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-):Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

1: inconclusive(The results does not meet the photoreactive , weakly photoreactive or Non-photoreactive criterion)

ND: not determined due to precipitation

ND: not determined due to precipitation

a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 18B Secondary data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the mean value of three assays (continued)

ROS ass (atlas) p	ay Validation data attern B		La	ıb 1			La	ıb 2			La	ıb 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgemen
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
II - 24	Aspirin	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 25	Benzocaine	-	±	-	-	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	±	-	-	-	-	-	-
II - 27	Penicillin G	-	±	±	±	±	±	±	±	-	-	-	-	±
II - 28	Phenytoin	±	±	±	±	±	±	±	±	±	-	±	±	±
II - 29	Bumetrizole	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	±	±	-	±	-	±	-	-	-	-	-	-	-
II - 32	Cinnamic acid	±	+	±	±	±	±	±	±	-	-	-	-	±
II - 33	Drometrizole	-	-	-	-	-	-	-	-	(-)	(-)	(-)	(-)	-
II - 34	L-Histidine	±	+	±	±	±	-	±	±	±	±	±	±	±
II - 35	Methylbenzylidene camphor	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 36	Octrizole	(±)	(±)	(±)	(±)	(-)	(±)	(-)	(-)	-	-	-	-	-
II - 37	Octyl methacrylate	-	+	+	+	-	-	-	-	-	-	-	-	-
II - 38	Octyl methoxycinnamate	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 39	Octyl salicylate	-	-	-	-	-	-	-	-	=	-	-	-	-
II - 40	PABA	-	-	-	-	-	-	-	-	=	-	-	-	-
II - 41	SDS	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 42	UV-571	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	ND

^{+:} Photoreactive (Singlet oxygen results ≥25 or Superoxide results ≥70 at 200 or 20 μM)

±: Weakly photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥20 and less than 70 at 200 or 20 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 200 or 20 μM)

(+):Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 or Superoxide results ≥70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(±): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results ≤25 and Superoxide results ≥20 and less than 70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

^{(-):}Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

It inconclusive(The results should due to precipitation)

ND: not determined due to precipitation

a : Integrated judgements were made by the majority of each laboratory's final judgement.

Table 18C Secondary data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the majority of three assay results

ROS ass (atlas) p	say Validation data attern C		La	ıb 1			Lab 2				Lab 3				
	Chemicals		Assay		Final		Assay		Final		Assay		Final	Integrated Judgement	
No.	Name	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment		
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 3	Amiodarone HCl	(+)	(-)	(-)	(-)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	ND	
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 6	Fenofibrate	+	+	+	+	(-)	(-)	(-)	(-)	+	+	+	+	+	
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 17	Rosiglitazone	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 19	Anthracene	+	+	+	+	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	+	
II - 20	Avobenzone	+	+	+	+	(±)	(±)	(±)	(±)	+	+	+	+	+	
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+	
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+	

^{+ :} Photoreactive (Singlet oxygen results ≥25 or Superoxide results ≥70 at 200 or 20 μM)

^{+:} Photoreactive (Singlet oxygen results ≥25 or Superoxide results ≥70 at 200 or 20 μM)

±: Weakly photoreactive (Singlet oxygen results <25 and Superoxide results ≥20 and less than 70 at 200 or 20 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 200 or 20 μM)

(+):Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 or Superoxide results ≥70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(±): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20 and less than 70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-):Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20 and less than 70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

1: inconclusive(The results does not meet the photoreactive , weakly photoreactive or Non-photoreactive criterion)

ND: not determined due to precipitation

ND: not determined due to precipitation
a : Integrated judgements were made by the majority of each laboratory's final judgement.

Table 18C Secondary data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the majority of three assay results (continued)

ROS assay Validation data (atlas) pattern C			La	ab 1			La	b 2			La	ab 3		
	Chemicals	<u> </u>	Assay		Final judg-	,	Assay		Final judg-		Assay		Final judg-	Integrated Judgement
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
II - 24	Aspirin	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 25	Benzocaine	-	±	-	-	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	±	-	-	-	-	-	-
II - 27	Penicillin G	-	±	±	±	±	±	±	±	-	-	_	-	±
II - 28	Phenytoin	±	±	±	±	±	±	±	±	±	-	±	±	±
II - 29	Bumetrizole	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	±	±	-	±	-	±	-	-	-	-	-	-	-
II - 32	Cinnamic acid	±	+	±	±	±	±	±	±	-	-	-	-	±
II - 33	Drometrizole	-	-	-	-	-	-	-	-	(-)	(-)	(-)	(-)	-
II - 34	L-Histidine	±	+	±	±	±	-	±	±	±	±	±	±	±
II - 35	Methylbenzylidene camphor	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 36	Octrizole	(±)	(±)	(±)	(±)	(-)	(±)	(-)	(-)	-	-	-	-	-
II - 37	Octyl methacrylate	-	+	+	+	-	-	-	-	-	-	-	-	-
II - 38	Octyl methoxycinnamate	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 39	Octyl salicylate	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 40	PABA	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 41	SDS	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 42	UV-571	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	ND

^{+:} Photoreactive (Singlet oxygen results ≥25 or Superoxide results ≥70 at 200 or 20 μM)

+: Weakly photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥20 and less than 70 at 200 or 20 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 200 or 20 μM)

(+): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 or Superoxide results ≥70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(+): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results ≤25 and Superoxide results ≥20 and less than 70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20 and less than 70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

1: inconclusive(The results does not meet the photoreactive , weakly photoreactive or Non-photoreactive criterion)

ND: not determined due to precipitation at 20μM and 200μM. Although, the results dependent of integrated results or data analyses.

1: inconclusive(The results does not meet the photoreactive , weakly photoreactive or Non-photoreactive criterion)

ND: not determined due to precipitation at

a : Integrated judgements were made by the majority of each laboratory's final judgement.

Table 18D Secondary data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the first assay results

ROS assay Validation data (atlas) pattern D				b 1				b 2				ab 3		y Tesares
(atlas) p	Chemicals		Assay		Final		Assay		Final		Assay		Final	Integrated
No.	Name	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	Judgement ^a
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	(+)	(-)	(-)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	ND
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	(-)	(-)	(-)	(-)	+	+	+	+	+
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 17	Rosiglitazone	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	+
II - 20	Avobenzone	+	+	+	+	(±)	(±)	(±)	(±)	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} Photoreactive (Singlet oxygen results ≥25 or Superoxide results ≥70 at 200 or 20 μM)

-: Weakly photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥20 and less than 70 at 200 or 20 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results ≥20 and less than 70 at 200 or 20 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results ≥20 and less than 70 at 200 or 20 μM)

-: Non-sassay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 or Superoxide results ≥70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(±): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20 and less than 70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-):Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20 and less than 70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

1: inconclusive(The results does not meet the photoreactive , weakly photoreactive or Non-photoreactive criterion)

ND: not determined due to precipitation

a: Integrated judgements were made by the majority of each laboratory's final judgement.

a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 18D Secondary data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the first assay results (continued)

ROS ass (atlas) p	say Validation data attern D		La	ıb 1			La	b 2			La	ıb 3		
No.	Chemicals Name	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	Integrated Judgement
II - 24	Aspirin	-		-	_	-	-	-	_	_	-	-	_	_
II - 25	Benzocaine	_	±	-	_	_	-	-	_	_	-	-	_	_
II - 26	Erythromycin	-	-	-	-	-	-	±	-	-	-	-	-	-
II - 27	Penicillin G	-	±	±	-	±	±	±	±	-	-	-	-	-
II - 28	Phenytoin	±	±	±	±	±	±	±	±	±	-	±	±	±
II - 29	Bumetrizole	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	±	±	-	±	-	±	-	-	-	-	-	-	-
II - 32	Cinnamic acid	±	+	±	±	±	±	±	±	-	-	-	-	±
II - 33	Drometrizole	-	-	-	-	-	-	-	-	(-)	(-)	(-)	(-)	-
II - 34	L-Histidine	±	+	±	±	±	-	±	±	±	±	±	±	±
II - 35	Methylbenzylidene camphor	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 36	Octrizole	(±)	(±)	(±)	(±)	(-)	(±)	(-)	(-)	-	-	-	-	-
II - 37	Octyl methacrylate	-	+	+	-	-	-	-	-	-	-	-	-	-
II - 38	Octyl methoxycinnamate	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 39	Octyl salicylate	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 40	PABA	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 41	SDS	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 42	UV-571	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	ND

^{+:} Photoreactive (Singlet oxygen results ≥25 or Superoxide results ≥20 at 200 or 20 μM)

±: Weakly photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥20 and less than 70 at 200 or 20 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 200 or 20 μM)

(+):Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 or Superoxide results ≥70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-):Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20 and less than 70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-):Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20 and less than 70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-):Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

1: inconclusive(The results does not meet the photoreactive, weakly photoreactive or Non-photoreactive criterion)

ND: not determined due to precipitation

a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 19A Secondary data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: The highest criteria among the three assay results was selected as the final judgement

Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

Lab 1		ROS					
Lau I	+	±	-	Total			
Phototoxic	+	22	0	0	22ª		
Phototoxic	-	3	4	9	16 ^b		
Total		25	4	9	38		

- a: One of 23 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl).
- b: 3 of 19 non-phototoxic chemicals were not evaluated at 20 or 200μM due to precipitation (Bumetrizole, Octizole, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (22/22) Specificity: 81.3% (13/16)

Positive predictivity: 88.0% (22/25) Negative predictivity: 100% (13/13)

Accuracy: 92.1% (35/38)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (22/22) Specificity: 56.3% (9/16)

Positive predictivity: 75.9%(22/29) Negative predictivity: 100% (9/9)

Accuracy: 81.6%(31/38)

Lab 2		ROS					
Lau 2	+	±	-	Total			
	+	19	0	0	19 ^c		
Phototoxic	-	0	6	8	14 ^d		
Total		19	6	8	33		

- c: 4 of 23 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl, Fenofibrate, Anthracene, Avobenzone).
- d: 5 of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Bumetrizole, Octrizole, Octyl methoxycinnamate, SDS, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals; Sensitivity: 100% (19/19) Specificity: 100% (14/14)

Positive predictivity: 100% (19/19) Negative predictivity: 100% (14/14)

Accuracy: 100% (33/33)

When the \pm : Weakly photoreactive chemicals were defined as phototoxic chemicals;

Sensitivity: 100% (19/19)

Positive predictivity: 76.0%(19/25)

Specificity: 57.1%(8/14)

Negative predictivity: 100% (8/8)

Accuracy: 81.8%(27/33)

Lab 3		ROS					
Lao 3	+	±	-	Total			
DI	+	21	0	0	21 ^e		
Phototoxic	-	0	2	15	17 ^f		
Total		21	2	15	38		

- e: 2 of 23 phototoxic chemicals were not evaluated at 20 or 200 μ M due to precipitation (Amiodarone HCl, Anthracene)
- f: 2 of 19 non-phototoxic chemicals were not evaluated at 20 or 200μM due to precipitation (Drometrizole, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (21/21) Specificity: 100% (17/17)

Positive predictivity: 100% (21/21) Negative predictivity: 100% (17/17)

Accuracy: 100% (38/38)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (21/21) Specificity: 88.2%(15/17)

Positive predictivity: 91.3%(21/23) Negative predictivity: 100% (15/15)

Accuracy: 94.7%(36/38)

Integrated Judgement			ROS				
		+	H	ı	Total		
Phototoxic	+	22	0	0	22 ^g		
	-	0	4	13	17 ^h		
Total		22	4	13	39		

- g: One of 23 phototoxic chemicals were not evaluated at 20 or $200\mu M$ due to precipitation (Amiodarone HCl) .
- h: 2 of 19 non-phototoxic chemicals were not evaluated at 20 or 200μM due to precipitation (Cinnamic acid, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (22/22) Specificity: 100% (17/17)

Positive predictivity: 100% (22/22) Negative predictivity: 100% (17/17)

Accuracy: 100% (39/39)

When the \pm : Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (22/22) Specificity: 76.5%(13/17) Positive predictivity: 84.6%(22/26) Negative predictivity: 100% (13/13)

Accuracy: 89.7%(35/39)

Table 19B Secondary data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: Final judgement based on the mean value of three assays

Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

Lab 1			ROS		Total
Lau I	+	±	-	Total	
Dhatataria	+	22	0	0	22 ^a
Phototoxic	-	1	5	10	16 ^b
Total		23	5	10	38

- a: One of 23 phototoxic chemicals were not evaluated at 20 or $200\mu M$ due to precipitation (Amiodarone HCl).
- b: 3 of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Bumetrizole, Octizole, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (22/22) Specificity: 93.8% (15/16) Positive predictivity: 95.7% (22/23) Negative predictivity: 100% (15/15)

Accuracy: 97.4% (37/38)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals;

Sensitivity: 100% (22/22) Specificity: 62.5% (10/16) Positive predictivity: 78.6%(22/28) Negative predictivity: 100% (10/10)

Accuracy: 84.2%(32/38)

Lab 2		ROS				
Lau 2	+	±	-	Total		
	+	19	0	0	19 ^c	
Phototoxic	-	0	4	10	14 ^d	
Total		19	4	10	33	

- c: 4 of 23 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl, Fenofibrate, Anthracene, Avobenzone).
- d: 5 of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Bumetrizole, Octrizole, Octyl methoxycinnamate, SDS, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (19/19) Specificity: 100% (14/14) Negative predictivity: 100% (14/14)

Positive predictivity: 100% (19/19) Accuracy: 100% (33/33)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals;

Sensitivity: 100% (19/19) Specificity: 71.4%(10/14)

Positive predictivity: 82.6%(19/23) Negative predictivity: 100% (10/10)

Accuracy: 87.9%(29/33)

Lab 3			ROS					
		+	±	-	Total			
	+	21	0	0	21 ^e			
Phototoxic	-	0	2	15	17 ^f			
Total		21	2	15	38			

- e: 2 of 23 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl, Anthracene)
- f: 2 of 19 non-phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Drometrizole, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (21/21) Specificity: 100% (17/17)

Positive predictivity: 100% (21/21) Negative predictivity: 100% (17/17)

Accuracy: 100% (38/38)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (21/21) Specificity: 88.2%(15/17)

Positive predictivity: 91.3%(21/23) Negative predictivity: 100% (15/15)

Accuracy: 94.7%(36/38)

Integrated		ROS					
Judgement		+	+ ± -				
Dhototovio	+	22	0	0	22 ^g		
Phototoxic	-	0	4	14	18 ^h		
Total		22	4	14	40		

- g: One of 23 phototoxic chemicals were not evaluated at 20 or $200\mu M$ due to precipitation (Amiodarone HCl)
- h: One of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (22/22) Specificity: 100% (18/18) Positive predictivity: 100% (22/22) Negative predictivity: 100% (18/18)

Accuracy: 100% (40/40)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Specificity: 77.8%(14/18) Sensitivity: 100% (22/22) Negative predictivity: 100% (14/14) Positive predictivity: 84.6%(22/26)

Accuracy: 90.0%(36/40)

Table 19C Secondary data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: Final judgement based on the majority of three assay results

Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

Lab 1			ROS				
Lau I	+	±	-	Total			
Dhatataria	+	22	0	0	22 ^a		
Phototoxic	-	1	5	10	16 ^b		
Total		23	5	10	38		

- a: One of 23 phototoxic chemicals were not evaluated at 20 or $200\mu M$ due to precipitation (Amiodarone HCl).
- b: 3 of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Bumetrizole, Octizole, UV-571).

When the \pm : Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (22/22) Specificity: 93.8% (15/16)
Positive predictivity: 95.7% (22/23) Negative predictivity: 100% (15/15)

Accuracy: 97.4% (37/38)

When the \pm : Weakly photoreactive chemicals were defined as phototoxic chemicals;

Sensitivity: 100% (22/22) Specificity: 62.5% (10/16)
Positive predictivity: 78.6%(22/28) Negative predictivity: 100% (10/10)

Accuracy: 84.2%(32/38)

Lab 2			ROS		Total
Lau 2		+	±	-	Total
Dhatataria	+	19	0	0	19 ^c
Phototoxic	-	0	4	10	14 ^d
Total		19	4	10	33

- c: 4 of 23 phototoxic chemicals were not evaluated at 20 or $200\mu M$ due to precipitation (Amiodarone HCl, Fenofibrate, Anthracene, Avobenzone).
- d: 5 of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Bumetrizole, Octrizole, Octyl methoxycinnamate, SDS, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (19/19) Specificity: 100% (14/14)

Positive predictivity: 100% (19/19) Negative predictivity: 100% (14/14)

Accuracy: 100% (33/33)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (19/19) Specificity: 71.4%(10/14)

Positive predictivity: 82.6%(19/23) Negative predictivity: 100% (10/10)

Accuracy: 87.9%(29/33)

Lab 3			ROS		Total
Lao 3		+	±	1	Total
Dhototovio	+	21	0	0	21 ^e
Phototoxic	-	0	2	15	17 ^f
Total		21	2	15	38

- e: 2 of 23 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl, Anthracene)
- f: 2 of 19 non-phototoxic chemicals were not evaluated at 20 or 200μM due to precipitation (Drometrizole, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Accuracy: 100% (38/38)

When the \pm : Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (21/21) Specificity: 88.2%(15/17)

Positive predictivity: 91.3%(21/23)

Negative predictivity: 100% (15/15)

Accuracy: 94.7%(36/38)

Integrated	d		ROS		Total
Judgemer	nt	+	±	-	Total
Phototoxic	+	22	0	0	22 ^g
Phototoxic	-	0	4	14	18 ^h
Total		22	4	14	40

- g: One of 23 phototoxic chemicals were not evaluated at 20 or $200\mu M$ due to precipitation (Amiodarone HCl) .
- h: One of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (UV-571).

When the \pm : Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (22/22) Specificity: 100% (18/18)
Positive predictivity: 100% (22/22) Negative predictivity: 100% (18/18)

Accuracy: 100% (40/40)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (22/22) Specificity: 77.8%(14/18) Positive predictivity: 84.6%(22/26) Negative predictivity: 100% (14/14)

Accuracy: 90.0%(36/40)

Table 19D Secondary data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: Final judgement based on the first assay results Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

I ala 1			ROS		Total
Lab 1		+	±	-	Total
Phototoxic	+	22	0	0	22ª
Phototoxic	-	0	4	12	16 ^b
Total		22	4	12	38

- a: One of 23 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl).
- b: 3 of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Bumetrizole, Octizole, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals; Sensitivity: 100% (22/22) Specificity: 100% (16/16)

Positive predictivity: 100% (22/22) Negative predictivity: 100% (16/16) Accuracy: 100% (38/38)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (22/22) Specificity: 75.0% (12/16) Positive predictivity: 84.6%(22/26) Negative predictivity: 100% (12/12)

Accuracy: 89.5%(34/38)

Lab 2			ROS		Total
Lau 2		+	±	-	10141
Dhatatania	+	19	0	0	19 ^c
Phototoxic	-	0	4	10	14 ^d
Total		19	4	10	33

- c: 4 of 23 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl, Fenofibrate, Anthracene, Avobenzone).
- d: 5 of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Bumetrizole, Octrizole, Octyl methoxycinnamate, SDS, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals; Sensitivity: 100% (19/19) Specificity: 100% (14/14) Negative predictivity: 100% (14/14)

Positive predictivity: 100% (19/19) Accuracy: 100% (33/33)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (19/19) Specificity: 71.4%(10/14)

Positive predictivity: 82.6%(19/23)Negative predictivity: 100% (10/10)

Accuracy: 87.9%(29/33)

Lab 3			ROS		Total
Lau 3		+	±	-	10141
Phototoxic	+	21	0	0	21 ^e
Phototoxic	-	0	2	15	17 ^f
Total		21	2	15	38

- e: 2 of 23 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl, Anthracene)
- f: 2 of 19 non-phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Drometrizole, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (21/21) Specificity: 100% (17/17)

Positive predictivity: 100% (21/21) Negative predictivity: 100% (17/17)

Accuracy: 100% (38/38)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals;

Sensitivity: 100% (21/21) Specificity: 88.2%(15/17) Positive predictivity: 91.3%(21/23) Negative predictivity: 100% (15/15)

Accuracy: 94.7%(36/38)

Integrated	d		ROS		Total
Judgemer	nt	+	±	ı	Total
Phototoxic	+	22	0	0	22 ^g
Phototoxic	-	0	3	15	18 ^h
Total		22	3	15	40

- g: One of 23 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl).
- h: One of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (22/22) Specificity: 100% (18/18) Positive predictivity: 100% (22/22) Negative predictivity: 100% (18/18)

Accuracy: 100% (40/40)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals;

Specificity: 83.3%(15/18) Sensitivity: 100% (22/22) Positive predictivity: 88.0%(22/25) Negative predictivity: 100% (15/15)

Accuracy: 92.5%(37/40)

Table 20 Secondary data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results

					Draf	t criteria for th	ne final judger	nent ^a				
						Data	analysis base	d on the criter	ia for the seco	ndary data an	alysis	
Lab 1		Orig	ginal				toreactive che ototoxic chem			: Weakly pho		
	A	В	С	D	A	В	С	D	A	В	С	D
Sensitivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(23/23)	(22/22)	(22/22)	(23/23)	(22/22)	(22/22)	(22/22)	(22/22)	(22/22)	(22/22)	(22/22)	(22/22)
Specificity	33.3%	41.7%	41.7%	58.3%	81.3%	93.8%	93.8%	100%	56.3%	62.5%	62.5%	75.0%
	(4/12)	(5/12)	(5/12)	(7/12)	(13/16)	(15/16)	(15/16)	(16/16)	(9/16)	(10/16)	(10/16)	(12/16)
Positive predictivity	74.2%	75.9%	75.9%	82.1%	88.0%	95.7%	95.7%	100%	75.9%	78.6%	78.6%	84.6%
	(23/31)	(22/29)	(22/29)	(23/28)	(22/25)	(22/23)	(22/23)	(22/22)	(22/29)	(22/28)	(22/28)	(22/26)
Negative predictivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(4/4)	(5/5)	(5/5)	(7/7)	(13/13)	(15/15)	(15/15)	(16/16)	(9/9)	(10/10)	(10/10)	(12/12)
Accuracy	77.1%	79.4%	79.4%	85.7%	92.1%	97.4%	97.4%	100%	81.6%	84.2%	84.2%	89.5%
	(27/35)	(27/34)	(27/34)	(30/35)	(35/38)	(37/38)	(37/38)	(38/38)	(31/38)	(32/38)	(32/38)	(34/38)

					Draf	t criteria for tl	ne final judger	ment ^a				
						Data	analysis base	d on the criter	ia for the seco	ndary data an	alysis	
Lab 2		Orig	ginal				toreactive che ototoxic chem			: Weakly phore		
	A	В	С	D	A	В	С	D	A	В	С	D
Sensitivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(21/21)	(21/21)	(21/21)	(21/21)	(19/19)	(19/19)	(19/19)	(19/19)	(19/19)	(19/19)	(19/19)	(19/19)
Specificity	36.4%	60.0%	60.0%	60.0%	100%	100%	100%	100%	57.1%	71.4%	71.4%	71.4%
	(4/11)	(6/10)	(6/10)	(6/10)	(14/14)	(14/14)	(14/14)	(14/14)	(8/14)	(10/14)	(10/14)	(10/14)
Positive predictivity	75.0%	84.0%	84.0%	84.0%	100%	100%	100%	100%	76.0%	82.6%	82.6%	82.6%
	(21/28)	(21/25)	(21/25)	(21/25)	(19/19)	(19/19)	(19/19)	(19/19)	(19/25)	(19/23)	(19/23)	(19/23)
Negative predictivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(4/4)	(6/6)	(6/6)	(6/6)	(14/14)	(14/14)	(14/14)	(14/14)	(8/8)	(10/10)	(10/10)	(10/10)
Accuracy	78.1%	87.1%	87.1%	87.1%	100%	100%	100%	100%	81.8%	87.9%	87.9%	87.9%
	(25/32)	(27/31)	(27/31)	(27/31)	(33/33)	(33/33)	(33/33)	(33/33)	(27/33)	(29/33)	(29/33)	(29/33)

a: A: Original: Final judgement of positive when positive results were obtained in at least one of three assays

Data analysis based on the criteria for the secondary data analysis: Final judgement of photoreactive or weakly photoreactive or weakly photoreactive results were obtained in at least one of three assays

B: Final judgement based on the mean value of three assays.

C: Final judgement based on the majority of three assay results

D : Final judgement based on the first assay results

Table 20 Secondary data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results (continued).

					Draf	t criteria for th	ne final judger	ment ^a				
						Data	analysis base	d on the criter	ia for the seco	ndary data an	alysis	
Lab 3		Orig	ginal			: Weakly pho ned as non-ph				: Weakly pho		
	A	В	С	D	A	В	С	D	A	В	С	D
Sensitivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(22/22)	(22/22)	(22/22)	(22/22)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)
Specificity	81.8%	81.8%	81.8%	81.8%	100%	100%	100%	100%	88.2%	88.2%	88.2%	88.2%
	(9/11)	(9/11)	(9/11)	(9/11)	(17/17)	(17/17)	(17/17)	(17/17)	(15/17)	(15/17)	(15/17)	(15/17)
Positive predictivity	91.7%	91.7%	91.7%	91.7%	100%	100%	100%	100%	91.3%	91.3%	91.3%	91.3%
	(22/24)	(22/24)	(22/24)	(22/24)	(21/21)	(21/21)	(21/21)	(21/21)	(21/23)	(21/23)	(21/23)	(21/23)
Negative predictivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(9/9)	(9/9)	(9/9)	(9/9)	(17/17)	(17/17)	(17/17)	(17/17)	(15/15)	(15/15)	(15/15)	(15/15)
Accuracy	93.9%	93.9%	93.9%	93.9%	100%	100%	100%	100%	94.7%	94.7%	94.7%	94.7%
	(31/33)	(31/33)	(31/33)	(31/33)	(38/38)	(38/38)	(38/38)	(38/38)	(36/38)	(36/38)	(36/38)	(36/38)

a : A : Original : Final judgement of positive when positive results were obtained in at least one of three assays

Data analysis based on the criteria for the secondary data analysis: Final judgement of photoreactive or weakly photoreactive or weakly photoreactive results were obtained in at least one of three assays

B: Final judgement based on the mean value of three assays.

C : Final judgement based on the majority of three assay results

D : Final judgement based on the first assay results

Table 21 Secondary data analysis based on the criteria for the proposed protocol: Contingency table for integrated judgement results.

					Draf	t criteria for th	ne final judger	ment ^a				
						Data	analysis base	d on the criter	ia for the seco	ndary data an	alysis	
Phase 2		Orig	ginal			: Weakly pho ned as non-ph				: Weakly phote		
	A ^c	В	С	D	A ^b	В	С	D	A ^b	В	С	D
Sensitivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(22/22)	(22/22)	(22/22)	(22/22)	(22/22)	(22/22)	(22/22)	(22/22)	(22/22)	(22/22)	(22/22)	(22/22)
Specificity	45.5%	60.0%	60.0%	70.0%	100%	100%	100%	100%	76.5%	77.8%	77.8%	83.3%
	(5/11)	(6/10)	(6/10)	(7/10)	(17/17)	(18/18)	(18/18)	(18/18)	(13/17)	(14/18)	(14/18)	(15/18)
Positive predictivity	78.6%	84.6%	84.6%	88.0%	100%	100%	100%	100%	84.6%	84.6%	84.6%	88.0%
	(22/28)	(22/26)	(22/26)	(22/25)	(22/22)	(22/22)	(22/22)	(22/22)	(22/26)	(22/26)	(22/26)	(22/25)
Negative predictivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(5/5)	(6/6)	(6/6)	(7/7)	(17/17)	(18/18)	(18/18)	(18/18)	(13/13)	(14/14)	(14/14)	(15/15)
Accuracy	81.8%	87.5%	87.5%	90.6%	100%	100%	100%	100%	89.7%	90.0%	90.0%	92.5%
	(27/33)	(28/32)	(28/32)	(29/32)	(39/39)	(40/40)	(40/40)	(40/40)	(35/39)	(36/40)	(36/40)	(37/40)

Integrated judgements were made by the majority of each laboratory's final judgement.

a: A: Original: Final judgement of positive when positive when positive when positive when positive when positive when positive results were obtained in at least one of three assays

Data analysis based on the criteria for the secondary data analysis: Final judgement of photoreactive or weakly photoreactive or weakly photoreactive or weakly photoreactive results were obtained in at least one of three assays

B: Final judgement based on the mean value of three assays.

C : Final judgement based on the majority of three assay results

D : Final judgement based on the first assay results

b: See, tables 18A to 18D

c: See, tables 12A to 12D

Table 22 Results of newly conducted ROS assay at 20 μM and the Phase 2 results of Lab 1

SC	17-1:4-4: 4-4- (-41)			2	14	A 1.1:	ti1 d-tt 20	1.1
os ass	ay Validation data (atlas) Chemicals			nase 2 resul	11.5	-	tional data at 20 µ	.1 V1
N0.	Name		Conc (µM)	Mean	SD	Conc (µM)	Mean	SD
II - 1	Ai di	SO	200	227	5.7	20	73	13
11 - 1	Acridine	SA	200	225	8.5	20	26	11
II - 2	Acridine HCl	SO	200	220	5.5	20	78	7
11 - 2	Acridine HCI	SA	200	214	2.3	20	46	8
11 2	Amiodarone HCl	SO	2	21	12	20	Precipitation	
II - 3	Amiodarone HCi	SA	2	-11	5.7	20	Precipitation	
		SO	200	-25	14.2	20	91	5
II - 4	Chlorpromazine HCl	SA	200	96	11.1	20	Not detected	
	D 1: 1101	SO	200	267	4.7	20	100	12
II - 5	Doxycycline HCl	SA	200	394	80.2	20	39	17
	- m	SO	20	166	39.4	20	202	1
II - 6	Fenofibrate	SA	20	-23	20.6	20	Not detected	
		SO	200	230	7.4	20	60	3
II - 7	Furosemide	SA	200	113	9.7	20	27	2
	TT	SO	200	363	5	20	50	10
II - 8	Ketoprofen	SA	200	130	7.5	20	18	6
		SO	200	115	4.6	20	13	2
II - 9	6-methylcoumarine	SA	200	122	11.6	20	26	14
		SO	200	87	12.1	20	21	3
I - 10	8-MOP	SA	200	109	31.2	20	43	4
		SO	200	238	95	20	58	3
I - 11	Nalidixic acid	SA	200	297	50.6	20	292	6
		SO	200	177	10.4	20	32	2
I - 12	Nalidixic acid (Na salt)	SA	200	241	42.6	20	128	5
		SO	200	216	2.6	20	61	7
I - 13	Norfloxacin	SA	200	132	17	20	31	5
		SO	200	196	6.1	20	14	6
I - 14	Ofloxacin	SA	200	284	62.1	20	79	17
		SO	200	211	20.5	20	63	3
I - 15	Piroxicam	SA	20	31	6.4	20	51	7
	p 1 : 1701	SO	200	72	11.1	20	94	6
I - 16	Promethazine HCl	SA	200	80	11	20	Not detected	
		SO	200	118	13.5	20	Not detected	_
I - 17	Rosiglitazone	SA	20	35	6	20	30	4
		SO	200	198	3.5	20	87	7
I - 18	Tetracycline	SA	200	210	11.6	20	70	16

Table 22 Results of newly conducted ROS assay at 20 μM and the Phase 2 results of Lab 1 (continued)

OS ass	ay Validation data (atlas)		Pl	nase 2 resu	lts	Additiona	l data at 20 μM	
NO	Chemicals		Conc (µM)	Mean	SD	Conc (µM)	Mean	SD
N0.	Name	SO	20	291	42.8	20	131	11
I - 19	Anthracene	SA	2	29	24.9	20	106	5
		SO	20	127	13.4	20	117	7
I - 20	Avobenzone	SA	2	34	16.6	20	Precipitation	_
		SO	200	103	18.8	20	103	10
I - 21	Bithionol	SA	200	24	3.5	20	1	14
		SO	200	335	18.6	20	71	11
I - 22	Hexachlorophene	SA	200	12	9	20	Not detected	
		SO	200	682	3	20	463	25
I - 23	Rose bengal	SA	ND	ND	ND	20	Not detected	23
		SO	200	2	1.5	20	2	6
I - 24	Aspirin		200	-6				0
		SA			13.7	20	Not detected	<u> </u>
I - 25	Benzocaine	SO	200	2		20	17	3
		SA SO	200	-1	10	20	6	11
I - 26	Erythromycin							1
		SA	200	6	2	20	Not detected	
I – 27	Penicillin G	SO	200	11	5.7	20	Not detected	
		SA	200	26	14.5	20	Not detected	
I - 28	Phenytoin	SO	200	8	9.9	20	Not detected	
		SA	200	50	16.1	20	11	3
I - 29	Bumetrizole	SO	20	-10	2.3	20	Not detected	
		SA	2	-2	9.3	20	Precipitation	
I - 30	Camphor sulfonic acid	SO	200	4	5.5	20	Not detected	
		SA	200	-13	9	20	Not detected	_
I - 31	Chlorhexidine	SO	200	-3	10.1	20	33	3
		SA	200	23	15.1	20	28	9
I - 32	Cinnamic acid	SO	200	2	3.5	20	Not detected	
		SA	200	56	17.6	20	Not detected	
I - 33	Drometrizole	SO	20	-1	7.4	20	7	7
		SA	20	-2	13.1	20	Not detected	_
I - 34	L-Histidine	SO	200	11	4	20	Not detected	
		SA	200	62	11	20	18	3
I - 35	Methylbenzylidene	SO	20	-5	2.1	20	3	1
	camphor	SA	20	-2	5.9	20	5	7
I - 36	Octrizole	SO	2	0	5.1	20	Precipitation	
		SA	2	42	17.6	20	Precipitation	/
I - 37	Octyl methacrylate	SO	200	32	18.2	20	Not detected	
		SA	200	-22	17.7	20	Not detected	/
I - 38	Octyl	SO	20	4	2.1	20	6	2
20	methoxycinnamate	SA	20	-14	3.1	20	Not detected	
I - 39	Octyl salicylate	SO	20	5	7.6	20	2	3
- 57	_ sij. same jiace	SA	20	5	6.1	20	1	2
I - 40	PABA	SO	200	5	13	20	Not detected	
. 10		SA	200	4	8.1	20	Not detected	
[- 41	SDS	SO	200	17	1.5	20	Not detected	
41	טעט	SA	20	8	7	20	5	4
1 42	UV 571	SO	20	-17	2.1	20	Not detected	
I - 42	UV-571	SA	2	10	5.5	20	Precipitation	

Table 23A Third data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: The highest criteria among the three assay results was selected as the final judgement

ROS assay Validation data Lab 1 Lab 2 Lab 3 (atlas) pattern A Integrated Assay Final Judgement judgjudg-ment judg-ment No. 3rd 2nd 2nd Name 1st 2nd 1st 3rd 1st 3rd II - 1 Acridine + + + + + + Acridine HCl + + + + + + + + + + + + + II - 3 Amiodarone HCl ND (+)(+)(-)(-)(+)(+)(+)(+)(+)(+)(+)(+)+ + + + + + +II - 4 Chlorpromazine HCl + + + + + + II - 5 Doxycycline HCl + + + + + + + + + + + + + II - 6 Fenofibrate + + + + + + + + + (-)(-)(-)(-)II - 7 + + + + + + + + + + Furosemide + + + + II - 8 + + + + + + + + + Ketoprofen + + + II - 9 6-methylcoumarine + + + + + + + + + II - 10 + II - 11 Nalidixic acid + + + + + + + + + + + + + Nalidixic acid (Na + II - 12 + + + + + + + + + + + + II - 13 Norfloxacin + + + + + + + + + + + + + II - 14 Ofloxacin + + + + + + + II - 15 + + + + + + + + Piroxicam + + + + + II - 16 Promethazine HCl + + + + + + + + + + + + + + II - 18 Tetracycline + II - 19 + + + + (-)(-)(-)(-)(-)(-)(-)(-)II - 20 Avobenzone + + + + + + (\pm) (±) + + + (\pm) (\pm) II - 21 Bithionol + + + + + + + + + + + + + + II - 22 Hexachlorophene + + + + + + + + + + + + II - 23 Rose bengal + + + + + + + + + + + +

^{+:} Photoreactive (Singlet oxygen results ≥25 and/or Superoxide results ≥70 at 20 and/or 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM)

^{±:} Weakly photoreactive (Singlet oxygen results <25 and Superoxide results <20, <70 at 20 and 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM) : Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 20 and 200 μM, two concentration levels without precipitation would be needed for judgement of Non-photoreactive, when precipitation is observed at 200 μ M, the compound should be judged as Inconclusive) (+): ROS assay was conducted at 2 μ M due to precipitation at 20 μ M and 200 μ M. Although, the results met the photoreactive criteria (Singlet oxygen results \geq 25 or Superoxide results \geq 70),

^{(+):} NOS assay was conducted at 2 μM on the perenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(±): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(+): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

I: inconclusive (The results do not meet the photoreactive, weakly photoreactive or Non-photoreactive criterion)

ND: not determined due to precipitation

a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 23A Third data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: The highest criteria among the three assay results was selected as the final judgement (continued)

					<u> </u>									
	say Validation data attern A		La	ab 1			La	b 2			La	ab 3		
No.	Chemicals Name	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	Integrated Judgement ^a
II - 24	Aspirin					150			ment			Jiu	ment	
		-	-		-		-	-		-	-			
II - 25	Benzocaine	-	±	-	±	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	±	±	-	-	-	-	-
II - 27	Penicillin G	-	±	±	±	±	±	±	±	-	-	-	-	±
II - 28	Phenytoin	±	±	±	±	±	±	±	±	±	-	±	±	±
II - 29	Bumetrizole	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	I	I	I	I	I
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	±	±	-	±	-	±	-	±	-	-	-	-	±
II - 32	Cinnamic acid	±	+	±	+	±	±	±	±	-	-	-	-	I
II - 33	Drometrizole	I	I	I	I	I	I	I	I	(-)	(-)	(-)	(-)	Ι
II - 34	L-Histidine	±	+	±	+	±	-	±	±	±	±	±	±	±
II - 35	Methylbenzylidene camphor	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 36	Octrizole	(±)	(±)	(±)	(±)	(-)	(±)	(-)	(±)	I	I	I	I	Ι
II - 37	Octyl methacrylate	-	+	+	+	I	I	I	I	I	I	I	I	I
II - 38	Octyl methoxycinnamate	I	I	I	I	(-)	(-)	(-)	(-)	I	I	I	I	I
II - 39	Octyl salicylate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 40	PABA	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 41	SDS	I	I	I	I	(-)	(-)	(-)	(-)	-	-	-	-	I
II - 42	UV-571	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	ND

^{+:} Photoreactive (Singlet oxygen results ≥25 and/or Superoxide results ≥70 at 20 and/or 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM)

±: Weakly photoreactive (Singlet oxygen results <25 and Superoxide results ≥20, <70 at 20 and 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 20 and 200 μM, two concentration levels without precipitation would be needed for judgement of Non-photoreactive, when precipitation is observed at 200 μM, the compound should be judged as Inconclusive)

(+): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 or Superoxide results ≥70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(±): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

the results shown in the parenthesis since the results at 2 µM were not used for the judgement of integrated results or data analyses

I: inconclusive (The results do not meet the photoreactive, weakly photoreactive or Non-photoreactive criterion)

ND: not determined due to precipitation

a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 23B Third data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the mean value of three assays

ROS ass (atlas) p	say Validation data attern B		La	ıb 1			La	ıb 2			La	ab 3		
No.	Chemicals Name	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	Integrated Judgement ^a
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	(+)	(-)	(-)	(-)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	ND
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	(-)	(-)	(-)	(-)	+	+	+	+	+
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	+
II - 20	Avobenzone	+	+	+	+	(±)	(±)	(±)	(±)	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} Photoreactive (Singlet oxygen results ≥25 and/or Superoxide results ≥70 at 20 and/or 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM)

±: Weakly photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥20, <70 at 20 and 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 20 and 200 μM, two concentration levels without precipitation would be needed for judgement of Non-photoreactive, when precipitation is observed at 200 μM, the compound should be judged as Inconclisive)

(+): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM, the results met the photoreactive criteria (Singlet oxygen results ≥25 or Superoxide results ≥70),

^{(+):} NOS assay was conducted at 2 μM on the perenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(±): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(+): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

I: inconclusive (The results do not meet the photoreactive, weakly photoreactive or Non-photoreactive criterion) ND: not determined due to precipitation

a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 23B Third data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the mean value of three assays (continued)

	say Validation data attern B		La	ıb 1			La	ıb 2			La	ıb 3		
No.	Chemicals Name	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	Integrated Judgement ^a
II - 24	Aspirin	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 25	Benzocaine	-	±	-	-	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	±	-	-	-	-	-	-
II - 27	Penicillin G	-	±	±	±	±	±	±	±	-	-	-	-	±
II - 28	Phenytoin	±	±	±	±	±	±	±	±	±	-	±	±	±
II - 29	Bumetrizole	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	I	I	I	I	I
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	±	±	-	±	-	±	-	-	-	-	-	-	-
II - 32	Cinnamic acid	±	+	±	±	±	±	±	±	-	-	-	-	±
II - 33	Drometrizole	I	I	I	I	I	I	I	I	(-)	(-)	(-)	(-)	I
II - 34	L-Histidine	±	+	±	±	±	-	±	±	±	±	±	±	±
II - 35	Methylbenzylidene camphor	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 36	Octrizole	(±)	(±)	(±)	(±)	(-)	(±)	(-)	(-)	I	I	I	I	I
II - 37	Octyl methacrylate	-	+	+	+	I	I	I	I	I	I	I	I	I
II - 38	Octyl methoxycinnamate	I	I	I	I	(-)	(-)	(-)	(-)	I	I	I	I	I
II - 39	Octyl salicylate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 40	PABA	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 41	SDS	I	I	I	I	(-)	(-)	(-)	(-)	-	-	-	-	I
II - 42	UV-571	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	ND

ND: not determined due to precipitation a: Integrated judgements were made by the majority of each laboratory's final judgement.

96

^{+:} Photoreactive (Singlet oxygen results ≥25 and/or Superoxide results ≥70 at 20 and/or 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM)

±: Weakly photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥20, <70 at 20 and 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 20 and 200 μM, two concentration levels without precipitation would be needed for judgement of Non-photoreactive, when precipitation is observed at 200 μM, the compound should be judged as Inconclisive)

(+): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 or Superoxide results ≥70),

the results shown in the parenthesis since the results at 2 µM were not used for the judgement of integrated results or data analyses.

(±): ROS assay was conducted at 2 µM due to precipitation at 20 µM and 200 µM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20,

<70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20),

the results shown in the parenthesis since the results at 2 µM were not used for the judgement of integrated results or data analyses. It inconclusive (The results do not meet the photoreactive, weakly photoreactive or Non-photoreactive criterion)

Table 23C Third data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the majority of three

assay results

ROS ass (atlas) p	say Validation data attern C		La	ıb 1			La	ıb 2			La	ıb 3		
No.	Chemicals Name	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	Integrated Judgement ^a
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	(+)	(-)	(-)	(-)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	ND
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	(-)	(-)	(-)	(-)	+	+	+	+	+
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	+
II - 20	Avobenzone	+	+	+	+	(±)	(±)	(±)	(±)	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} Photoreactive (Singlet oxygen results ≥25 and/or Superoxide results ≥70 at 20 and/or 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM)

±: Weakly photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥20, <70 at 20 and 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 20 and 200 μM, two concentration levels without precipitation would be needed for judgement of Non-photoreactive, when precipitation is observed at 200 μM, the compound should be judged as Inconclisive)

(+): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM, the results met the photoreactive criteria (Singlet oxygen results ≥25 or Superoxide results ≥70),

^{(+):} NOS assay was conducted at 2 μM on the perenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(±): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(+): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

I: inconclusive (The results do not meet the photoreactive, weakly photoreactive or Non-photoreactive criterion) ND: not determined due to precipitation

a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 23C Third data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the majority of three assay results (continued)

	say Validation data attern C		La	ıb 1			La	ıb 2			La	ıb 3		
No.	Chemicals Name	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	Integrated Judgement ^a
II - 24	Aspirin	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 25	Benzocaine	-	±	-	-	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	±	-	-	-	-	-	-
II - 27	Penicillin G	-	±	±	±	±	±	±	±	-	-	-	-	±
II - 28	Phenytoin	±	±	±	±	±	±	±	±	±	-	±	±	±
II - 29	Bumetrizole	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	I	I	I	I	I
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	±	±	-	±	-	±	-	-	-	-	-	-	-
II - 32	Cinnamic acid	±	+	±	±	±	±	±	±	-	-	-	-	±
II - 33	Drometrizole	I	I	I	I	I	I	I	I	(-)	(-)	(-)	(-)	I
II - 34	L-Histidine	±	+	±	±	±	-	±	±	±	±	±	±	±
II - 35	Methylbenzylidene camphor	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 36	Octrizole	(±)	(±)	(±)	(±)	(-)	(±)	(-)	(-)	I	I	I	I	I
II - 37	Octyl methacrylate	-	+	+	+	I	I	I	I	I	I	I	I	I
II - 38	Octyl methoxycinnamate	I	I	I	I	(-)	(-)	(-)	(-)	I	I	I	I	I
II - 39	Octyl salicylate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 40	PABA	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 41	SDS	I	I	I	I	(-)	(-)	(-)	(-)	-	-	-	-	I
II - 42	UV-571	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	ND

^{+:} Photoreactive (Singlet oxygen results ≥25 and/or Superoxide results ≥70 at 20 and/or 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM)

±: Weakly photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥20, <70 at 20 and 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 20 and 200 μM, two concentration levels without precipitation would be needed for judgement of Non-photoreactive, when precipitation is observed at 200 μM, the compound should be judged as Inconclisive)

(+): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 or Superoxide results ≥70),

the results shown in the parenthesis since the results at 2 µM were not used for the judgement of integrated results or data analyses.

(±): ROS assay was conducted at 2 µM due to precipitation at 20 µM and 200 µM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20),

the results shown in the parenthesis since the results at 2 µM were not used for the judgement of integrated results or data analyses. It inconclusive (The results do not meet the photoreactive, weakly photoreactive or Non-photoreactive criterion)

ND: not determined due to precipitation a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 23D Third data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the first assay results

ROS ass (atlas) p	ay Validation data attern D		La	ıb 1			La	b 2			La	ıb 3		Total 1 1
No.	Chemicals	1-4	Assay	2-4	Final judg-	1-4	Assay	2-4	Final judg-	1-4	Assay	21	Final judg-	Integrated Judgement
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	(+)	(-)	(-)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	ND
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	(-)	(-)	(-)	(-)	+	+	+	+	+
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	+
II - 20	Avobenzone	+	+	+	+	(±)	(±)	(±)	(±)	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} Photoreactive (Singlet oxygen results ≥25 and/or Superoxide results ≥70 at 20 and/or 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM)

 ^{+:} Photoreactive (Singlet oxygen results ≥25 and/or Superoxide results ≥70 at 20 and/or 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM)
 -: Weakly photoreactive (Singlet oxygen results <25 and Superoxide results ≥20, <70 at 20 and 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM
 -: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 20 and 200 μM, two concentration levels without precipitation would be needed for judgement of Non-photoreactive, when precipitation is observed at 200 μM, the compound should be judged as Inconclusive)
 (+): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 or Superoxide results ≥70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.
 (±): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.
 (+): ROS assay was conducted at 2 μM due to precipitation at 20 μM and 200 μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

the results shown in the parenthesis since the results at $2 \mu M$ were not used for the judgement of integrated results or data analyses. It inconclusive (The results do not meet the photoreactive, weakly photoreactive or Non-photoreactive criterion)

ND: not determined due to precipitation a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 23D Third data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the first assay results (continued)

ROS ass (atlas) p	say Validation data attern D		La	ıb 1			La	ıb 2			La	b 3		
No.	Chemicals Name	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	Integrated Judgement
II - 24	Aspirin	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 25	Benzocaine	-	±	-	-	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	±	-	-	-	-	-	-
II - 27	Penicillin G	-	±	±	-	±	±	±	±	-	-	-	-	-
II - 28	Phenytoin	±	±	±	±	±	±	±	±	±	-	±	±	±
II - 29	Bumetrizole	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	I	I	I	I	I
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	±	±	-	±	-	±	-	-	-	-	-	-	-
II - 32	Cinnamic acid	±	+	±	±	±	±	±	±	-	-	-	-	±
II - 33	Drometrizole	I	I	I	I	I	I	I	I	(-)	(-)	(-)	(-)	I
II - 34	L-Histidine	±	+	±	±	±	-	±	±	±	±	±	±	±
II - 35	Methylbenzylidene camphor	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 36	Octrizole	(±)	(±)	(±)	(±)	(-)	(±)	(-)	(-)	I	I	I	I	I
II - 37	Octyl methacrylate	-	+	+	-	I	I	I	I	I	I	I	I	I
II - 38	Octyl methoxycinnamate	I	I	I	I	(-)	(-)	(-)	(-)	I	I	I	I	I
II - 39	Octyl salicylate	I	I	I	I	I	I	I	I	I	I	I	I	I
II - 40	PABA	-	-	-	-	-	-	-	-	-	-	=	-	-
II - 41	SDS	I	Ι	I	I	(-)	(-)	(-)	(-)	-	-	-	-	I
II - 42	UV-571	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	ND

^{+:} Photoreactive (Singlet oxygen results ≥25 and/or Superoxide results ≥70 at 20 and/or 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM)

±: Weakly photoreactive (Singlet oxygen results <25 and Superoxide results ≥20, <70 at 20 and 200 μM, it would be judged at 20 μM only when precipitation is observed at 200 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 20 and 200 μM, two concentration levels without precipitation would be needed for judgement of Non-photoreactive, when precipitation is observed at 200 μM, the compound should be judged as Inconclusive)

^{(+):} ROS assay was conducted at 2 µM due to precipitation at 20 µM and 200 µM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 or Superoxide results ≥70), the results shown in the parenthesis since the results at 2 µM were not used for the judgement of integrated results or data analyses.

^{(±):} ROS assay was conducted at 2 µM due to precipitation at 20 µM and 200 µM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), the results shown in the parenthesis since the results at 2 µM were not used for the judgement of integrated results or data analyses.

^{(-):} ROS assay was conducted at 2 µM due to precipitation at 20 µM and 200 µM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 µM were not used for the judgement of integrated results or data analyses.

I: inconclusive (The results do not meet the photoreactive, weakly photoreactive or Non-photoreactive criterion)

ND: not determined due to precipitation

a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 24A Third data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: The highest criteria among the three assay results was selected as the final judgement

Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

Lab 1			ROS		Total
Lau I		+	±	-	Total
Dhototovio	+	21	0	0	21ª
Phototoxic	-	3	4	4	11 ^b
Total		24	4	4	32

a: One of 22 phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Amiodarone HCl).
b: Eight of 19 non-phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Bumetrizole,
Drometrizole, Methylbenzylidene camphor, Octizole, Octyl methoxycinnamate, Octyl salicylate, SDS,
UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals; Sensitivity: 100% (21/21) Specificity: 72.7% (8/11) Negative predictivity: 100% (8/8) Positive predictivity: 87.5% (21/24)

Accuracy: 90.6% (29/32)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Specificity: 36.4% (4/11) Sensitivity: 100% (21/21) Positive predictivity: 75.0%(21/28) Negative predictivity: 100% (4/4)

Accuracy: 78.1%(25/32)

Lab 2			ROS		Total
Lau 2		+	±	-	10141
Dhatatania	+	18	0	0	18 ^c
Phototoxic	-	0	6	4	10 ^d
Total		18	6	4	28

- c: Four of 22 phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Amiodarone HCl, Fenofibrate, Anthracene, Avobenzone).
- d: Nine of 19 non-phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Bumetrizole, Drometrizole, Methylbenzylidene camphor, Octizole, Octyl methacrylate, Octyl methoxycinnamate, Octyl salicylate, SDS, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals; Sensitivity: 100% (18/18) Specificity: 100% (10/10) Positive predictivity: 100% (18/18) Negative predictivity: 100% (10/10)

Accuracy: 100% (28/28)

When the \pm : Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (18/18) Specificity: 40.0%(4/10) Positive predictivity: 75.0%(18/24) Accuracy: 78.6%(22/28) Negative predictivity: 100% (4/4)

I als 2			ROS		Total
Lab 3		+	±	-	Total
Distant	+	20	0	0	20 ^e
Phototoxic	-	0	2	9	11 ^f
Total		20	2	9	31

- e: Two of 22 phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Amiodarone HCl, Anthracene)
- f: Eight of 19 non-phototoxic chemicals were not evaluated at 20 or 200 μM due to precipitation (Bumetrizole, Drometrizole, Methylbenzylidene camphor, Octizole, Octyl methacrylate, Octyl methoxycinnamate, Octyl salicylate, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (20/20) Specificity: 100% (11/11) Negative predictivity: 100% (11/11) Positive predictivity: 100% (20/20)

Accuracy: 100% (31/31)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (20/20) Specificity: 81.8%(9/11) Positive predictivity: 90.9%(20/22) Accuracy: 93.5%(29/31) Negative predictivity: 100% (9/9)

Integrated Judgement		ROS			Total
		+	±	i	Total
Phototoxic	+	21	0	0	21 ^g
	-	0	4	5	9 ^h
Total		21	4	5	30

g: One of 22 phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Amiodarone HCl) h: Ten of 19 non-phototoxic chemicals were not evaluated at 20 or 200 μM due to precipitation or the results does not meet the photoreactive, weakly photoreactive or non-photoreactive criterion. (Bumetrizole, Cinnamic acid, Drometrizole, Methylbenzylidene camphor, Octizole, Octyl methacrylate, Octyl methoxycinnamate, Octyl salicylate, SDS, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (21/21) Specificity: 100% (9/9)

Negative predictivity: 100% (9/9) Positive predictivity: 100% (21/21)

Accuracy: 100% (30/30)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (21/21) Specificity: 55.6%(5/9)

Positive predictivity: 84.0%(21/25) Negative predictivity: 100% (5/5) Accuracy: 86.7%(26/30)

Table 24B Third data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: Final judgement based on the mean value of three assays

Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

Lab 1		ROS			Total
		+	±	-	Total
Phototoxic	+	21	0	0	21 ^a
	-	1	5	5	11 ^b
Total		22	5	5	32

a: One of 22 phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Amiodarone HCl). b: Eight of 19 non-phototoxic chemicals were not evaluated at 20 or 200 μM due to precipitation (Bumetrizole, Drometrizole, Methylbenzylidene camphor, Octizole, Octyl methoxycinnamate, Octyl salicylate, SDS, UV-571)

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals; Sensitivity: 100% (21/21) Specificity: 90.9% (10/11) Positive predictivity: 95.5% (21/22) Negative predictivity: 100% (10/10) Accuracy: 96.9% (31/32)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Specificity: 45.5% (5/11) Sensitivity: 100% (21/21) Positive predictivity: 77.8%(21/27) Negative predictivity: 100% (5/5) Accuracy: 81.3%(26/32)

Lab 2			Total		
		+	±	-	Total
Phototoxic	+	18	0	0	18 ^c
	-	0	4	6	10 ^d
Total		18	4	6	28

c: Four of 22 phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Amiodarone HCl, Fenofibrate, Anthracene, Avobenzone).

d: Nine of 19 non-phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Bumetrizole, Drometrizole, Methylbenzylidene camphor, Octizole, Octyl methacrylate, Octyl methoxycinnamate, Octyl salicylate, SDS, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals; Sensitivity: 100% (18/18) Specificity: 100% (10/10) Negative predictivity: 100% (10/10) Positive predictivity: 100% (18/18) Accuracy: 100% (28/28)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (18/18) Specificity: 60.0%(6/10) Positive predictivity: 81.8%(18/22) Negative predictivity: 100% (6/6) Accuracy: 85.7%(24/28)

Lab 3			Total		
		+	±	-	Total
Phototoxic	+	20	0	0	20 ^e
	-	0	2	9	11 ^f
Total		20	2	9	31

- e: Two of 22 phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Amiodarone HCl,
- f: Eight of 19 non-phototoxic chemicals were not evaluated at 20 or 200 μM due to precipitation (Bumetrizole, $Drometrizole, \\ \underline{Methylbenzylidene\ camphor,\ Octizole,\ Octyl\ methacrylate,\ Octyl\ methoxycinnamate,\ Octyl\ methoxy$ salicylate, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals; Sensitivity: 100% (20/20) Specificity: 100% (11/11) Positive predictivity: 100% (20/20) Negative predictivity: 100% (11/11) Accuracy: 100% (31/31)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Specificity: 81.8%(9/11) Sensitivity: 100% (20/20) Negative predictivity: 100% (9/9) Positive predictivity: 90.9%(20/22) Accuracy: 93.5%(29/31)

Integrated Judgement		ROS			Total
		+	H	ı	101a1
Phototoxic	+	21	0	0	21 ^g
	-	0	4	6	10 ^h
Total		21	4	6	31

: One of 22 phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Amiodarone HCl) h: Nine of 19 non-phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation or the results does not meet the photoreactive, weakly photoreactive or non-photoreactive criterion. (Bumetrizole, Drometrizole, Methylbenzylidene camphor, Octizole, Octyl methacrylate, Octyl methoxycinnamate, Octyl salicylate, SDS, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals; Sensitivity: 100% (21/21) Specificity: 100% (10/10)

Positive predictivity : 100% (21/21) Accuracy : 100% (31/31) Negative predictivity: 100% (10/10)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Specificity: 60.0%(6/10) Sensitivity: 100% (21/21) Positive predictivity: 84.0%(21/25) Negative predictivity: 100% (6/6) Accuracy: 87.1%(27/31)

Table 24C Third data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: Final judgement based on the majority of three assay results

Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

Lab 1			ROS						
Lau I		+	±	-	Total				
Phototoxic	+	21	0	0	21 ^a				
Phototoxic	-	1	5	5	11 ^b				
Total		22	5	5	32				

a: One of 22 phototoxic chemicals were not evaluated at 20 or 200 μM due to precipitation (Amiodarone HCl). b: Eight of 19 non-phototoxic chemicals were not evaluated at 20 or 200 μM due to precipitation (Bumetrizole, Drometrizole, Methylbenzylidene camphor, Octizole, Octyl methoxycinnamate, Octyl salicylate, SDS, UV-571)

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;; Sensitivity: 100% (21/21) Specificity: 90.9% (10/11) Positive predictivity: 95.5% (21/22) Negative predictivity: 100% (10/10) Accuracy: 96.9% (31/32)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Specificity: 45.5% (5/11) Sensitivity: 100% (21/21) Positive predictivity: 77.8%(21/27) Negative predictivity: 100% (5/5)

Accuracy: 81.3%(26/32)

Lab 2			ROS						
Lau 2		+	±	-	Total				
Dhatatania	+	18	0	0	18 ^c				
Phototoxic	-	0	4	6	10 ^d				
Total	18	4	6	28					

c: Four of 22 phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Amiodarone HCl, Fenofibrate, Anthracene, Avobenzone).

d: Nine of 19 non-phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Bumetrizole, Drometrizole, Methylbenzylidene camphor, Octizole, Octyl methacrylate, Octyl methoxycinnamate, Octyl salicylate, SDS, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals; Sensitivity: 100% (18/18) Specificity: 100% (10/10) Negative predictivity: 100% (10/10) Positive predictivity: 100% (18/18) Accuracy: 100% (28/28)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (18/18) Specificity: 60.0%(6/10) Positive predictivity: 81.8%(18/22) Negative predictivity: 100% (6/6)

Accuracy: 85.7%(24/28)

Lab 3			ROS						
Lau 3		+	±	-	Total				
Phototoxic	+	20	0	0	20 ^e				
Phototoxic	-	0	2	9	11 ^f				
Total	20	2	9	31					

e: Two of 22 phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Amiodarone HCl,

f: Eight of 19 non-phototoxic chemicals were not evaluated at 20 or 200 μM due to precipitation (Bumetrizole, $Drometrizole, \\ \underline{Methylbenzylidene\ camphor,\ Octizole,\ Octyl\ methacrylate,\ Octyl\ methoxycinnamate,\ Octyl\ methoxy$ salicylate, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals; Sensitivity: 100% (20/20) Specificity: 100% (11/11) Positive predictivity: 100% (20/20) Negative predictivity: 100% (11/11) Accuracy: 100% (31/31)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Specificity: 81.8%(9/11) Sensitivity: 100% (20/20) Negative predictivity: 100% (9/9) Positive predictivity: 90.9%(20/22) Accuracy: 93.5%(29/31)

Integrated	d		ROS		Total		
Judgemen	+	+ ± -					
	+	21	0	0	21 ^g		
Phototoxic	-	0	4	6	10 ^h		
Total		21	4	6	31		

: One of 22 phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Amiodarone HCl) h: Nine of 19 non-phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation or the results does not meet the photoreactive, weakly photoreactive or non-photoreactive criterion. (Bumetrizole, Drometrizole, Methylbenzylidene camphor, Octizole, Octyl methacrylate, Octyl methoxycinnamate, Octyl salicylate, SDS, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (21/21) Specificity: 100% (10/10)

Positive predictivity : 100% (21/21) Accuracy : 100% (31/31) Negative predictivity: 100% (10/10)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Specificity: 60.0%(6/10) Sensitivity: 100% (21/21) Positive predictivity: 84.0%(21/25) Negative predictivity: 100% (6/6) Accuracy: 87.1%(27/31)

Table 24D Third data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: Final judgement based on the first assay results Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

I ala 1			ROS		Total
Lab 1	+	±	-	Total	
Phototoxic	+	21	0	0	21 ^a
Phototoxic	-	0	4	7	11 ^b
Total		21	4	7	32

a: One of 22 phototoxic chemicals were not evaluated at 20 or 200 μM due to precipitation (Amiodarone HCl). b: Eight of 19 non-phototoxic chemicals were not evaluated at 20 or 200 μM due to precipitation (Bumetrizole, Drometrizole, Methylbenzylidene camphor, Octizole, Octyl methoxycinnamate, Octyl salicylate, SDS,

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (21/21) Positive predictivity: 100% (21/21) Accuracy: 100% (32/32) Specificity: 100% (11/11) Negative predictivity: 100% (11/11)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (21/21) Specificity: 63.6% (7/11) Positive predictivity: 84.0%(21/25) Negative predictivity: 100% (7/7)

Accuracy: 87.5%(28/32)

Lab 2			ROS		Total
Lau 2	+	±	-	10141	
Dhatataria	+	18	0	0	18 ^c
Phototoxic	-	0	4	6	10 ^d
Total	18	4	6	28	

c: Four of 22 phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Amiodarone HCl, Fenofibrate, Anthracene, Avobenzone).

d: Nine of 19 non-phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Bumetrizole, $Drometrizole, Methylbenzylidene\ camphor,\ Octizole,\ Octyl\ methacrylate,\ Octyl\ methoxycinnamate,\ Octyl$ salicylate, SDS, UV-571)

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Specificity: 100% (10/10) Sensitivity: 100% (18/18)

Positive predictivity: 100% (18/18) Negative predictivity: 100% (10/10)

Accuracy: 100% (28/28)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (18/18) Specificity: 60.0%(6/10) Positive predictivity: 81.8%(18/22) Negative predictivity: 100% (6/6)

Accuracy: 85.7%(24/28)

Lab 3			ROS						
Lau 3		+	±	-	Total				
Phototoxic	+	20	0	0	20 ^e				
Phototoxic	-	0	2	9	11 ^f				
Total	20	2	9	31					

- e: Two of 22 phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Amiodarone HCl, Anthracene)
- f: Eight of 19 non-phototoxic chemicals were not evaluated at 20 or 200 μM due to precipitation (Burnetrizole, Drometrizole, Methylbenzylidene camphor, Octizole, Octyl methacrylate, Octyl methoxycinnamate, Octyl salicylate, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (20/20) Specificity: 100% (11/11) Negative predictivity: 100% (11/11)

Positive predictivity: 100% (20/20)

Accuracy: 100% (31/31)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (20/20) Positive predictivity: 90.9%(20/22) Specificity: 81.8%(9/11) Negative predictivity: 100% (9/9)

Accuracy: 93.5%(29/31)

Integrated	Integrated				Total
Judgemen	+	±	-	101a1	
Phototoxic	+	21	0	0	21 ^g
Phototoxic	-	0	3	7	10 ^h
Total		21	3	7	31

g: One of 22 phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Amiodarone HCl). h: Nine of 19 non-phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation or the results does not meet the photoreactive, weakly photoreactive or non-photoreactive criterion. (Bumetrizole, Drometrizole, Methylbenzylidene camphor, Octizole, Octyl methacrylate, Octyl methoxycinnamate, Octyl salicylate, SDS, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals; Specificity: 100% (10/10) Sensitivity: 100% (21/21)

Positive predictivity: 100% (21/21) Negative predictivity: 100% (10/10)

Accuracy: 100% (31/31)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (21/21) Specificity: 70.0%(7/10) Positive predictivity: 87.5%(21/24) Negative predictivity: 100% (7/7)

Accuracy: 90.3%(28/31)

Table 25 Third data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results

					Draf	t criteria for th	ne final judger	ment ^a				
							l data analysis	based on the	criteria for the	e proposed pro	otocol	
Lab 1			When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals				±: Weakly ph defined as ph		chemicals micals			
	A B C D				A	В	С	D	A	В	С	D
Sensitivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(22/22)	(21/21)	(21/21)	(22/22)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)
Specificity	33.3%	41.7%	41.7%	58.3%	72.7%	90.9%	90.9%	100%	36.4%	45.5%	45.5%	63.6%
	(4/12)	(5/12)	(5/12)	(7/12)	(8/11)	(10/11)	(10/11)	(11/11)	(4/11)	(5/11)	(5/11)	(7/11)
Positive predictivity	73.3%	75.0%	75.0%	81.5%	87.5%	95.5%	95.5%	100%	75.0%	77.8%	77.8%	84.0%
	(22/30)	(21/28)	(21/28)	(22/27)	(21/24)	(21/22)	(21/22)	(21/21)	(21/28)	(21/27)	(21/27)	(21/25)
Negative predictivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(4/4)	(5/5)	(5/5)	(7/7)	(8/8)	(10/10)	(10/10)	(11/11)	(4/4)	(5/5)	(5/5)	(7/7)
Accuracy	76.5%	78.8%	78.8%	85.3%	90.6%	96.9%	96.9%	100%	78.1%	81.3%	81.3%	87.5%
	(26/34)	(26/33)	(26/33)	(29/34)	(29/32)	(31/32)	(31/32)	(32/32)	(25/32)	(26/32)	(26/32)	(28/32)

					Draf	t criteria for th	ne final judger	ment ^a				
						Thire	d data analysis	s based on the	criteria for the	e proposed pro	otocol	
Lab 2		Orig	ginal			±: Weakly plefined as non-	notoreactive phototoxic ch	chemicals emicals		When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals		
	A B C D				A	В	С	D	A	В	С	D
Sensitivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(20/20)	(20/20)	(20/20)	(20/20)	(18/18)	(18/18)	(18/18)	(18/18)	(18/18)	(18/18)	(18/18)	(18/18)
Specificity	36.4%	60.0%	60.0%	60.0%	100%	100%	100%	100%	40.0%	60.0%	60.0%	60.0%
	(4/11)	(6/10)	(6/10)	(6/10)	(10/10)	(10/10)	(10/10)	(10/10)	(4/10)	(6/10)	(6/10)	(6/10)
Positive predictivity	74.1%	83.3%	83.3%	83.3%	100%	100%	100%	100%	75.0%	81.8%	81.8%	81.8%
	(20/27)	(20/24)	(20/24)	(20/24)	(18/18)	(18/18)	(18/18)	(18/18)	(18/24)	(18/22)	(18/22)	(18/22)
Negative predictivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(4/4)	(6/6)	(6/6)	(6/6)	(10/10)	(10/10)	(10/10)	(10/10)	(4/4)	(6/6)	(6/6)	(6/6)
Accuracy	77.4%	86.7%	86.7%	86.7%	100%	100%	100%	100%	78.6%	85.7%	85.7%	85.7%
	(24/31)	(26/30)	(26/30)	(26/30)	(28/28)	(28/28)	(28/28)	(28/28)	(22/28)	(24/28)	(24/28)	(24/28)

a: A: Original: Final judgement of positive when positive results were obtained in at least one of three assays

Third data analysis based on the criteria for the proposed protocol: The highest criteria among the three assay results was selected as the final judgement B: Final judgement based on the mean value of three assays.

C : Final judgement based on the majority of three assay results

D : Final judgement based on the first assay results

Table 25 Third data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results (continued).

					Draf	t criteria for th	ne final judger	nent ^a				
						Thire	d data analysis	based on the	criteria for the	e proposed pro	otocol	
Lab 3		Original				±: Weakly phefined as non-		chemicals emicals	When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals			
	A	В	С	D	A	В	С	D	A	В	С	D
Sensitivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(21/21)	(21/21)	(21/21)	(21/21)	(20/20)	(20/20)	(20/20)	(20/20)	(20/20)	(20/20)	(20/20)	(20/20)
Specificity	81.8%	81.8%	81.8%	81.8%	100%	100%	100%	100%	81.8%	81.8%	81.8%	81.8%
	(9/11)	(9/11)	(9/11)	(9/11)	(11/11)	(11/11)	(11/11)	(11/11)	(9/11)	(9/11)	(9/11)	(9/11)
Positive predictivity	91.3%	91.3%	91.3%	91.3%	100%	100%	100%	100%	90.9%	90.9%	90.9%	90.9%
	(21/23)	(21/23)	(21/23)	(21/23)	(20/20)	(20/20)	(20/20)	(20/20)	(20/22)	(20/22)	(20/22)	(20/22)
Negative predictivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(9/9)	(9/9)	(9/9)	(9/9)	(11/11)	(11/11)	(11/11)	(11/11)	(9/9)	(9/9)	(9/9)	(9/9)
Accuracy	93.8%	93.8%	93.8%	93.8%	100%	100%	100%	100%	93.5%	93.5%	93.5%	93.5%
	(30/32)	(30/32)	(30/32)	(30/32)	(31/31)	(31/31)	(31/31)	(31/31)	(29/31)	(29/31)	(29/31)	(29/31)

a : A : Original : Final judgement of positive when positive results were obtained in at least one of three assays

Third data analysis based on the criteria for the proposed protocol: The highest criteria among the three assay results was selected as the final judgement

B: Final judgement based on the mean value of three assays.

C : Final judgement based on the majority of three assay results

D : Final judgement based on the first assay results

Table 26 Third data analysis based on the criteria for the proposed protocol: Contingency table for integrated judgement results.

					Draf	t criteria for th	ne final judger	ment ^a					
							data analysis	based on the	criteria for the	proposed pro	tocol ^c		
Phase 2		Orig	inal ^b		When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals					When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals			
	A	В	C	D	A	В	C	D	A	В	С	D	
Sensitivity	100% (21/21)	100% (21/21)	100% (21/21)	100% (21/21)	100% (21/21)	100% (21/21)	100% (21/21)	100% (21/21)	100% (21/21)	100% (21/21)	100% (21/21)	100% (21/21)	
Specificity	45.5% (5/11)	60.0% (6/10)	60.0% (6/10)	70.0% (7/10)	100% (9/9)	100% (10/10)	100% (10/10)	100% (10/10)	55.6% (5/9)	60.0% (6/10)	60.0% (6/10)	70.0% (7/10)	
Positive predictivity	77.8% (21/27)	84.0% (21/25)	84.0% (21/25)	87.5% (21/24)	100% (21/21)	100% (21/21)	100% (21/21)	100% (21/21)	84.0% (21/25)	84.0% (21/25)	84.0% (21/25)	87.5% (21/24)	
Negative predictivity	100% (5/5)	100% (6/6)	100% (6/6)	100% (7/7)	100% (9/9)	100% (10/10)	100% (10/10)	100% (10/10)	100% (5/5)	100% (6/6)	100% (6/6)	100% (7/7)	
Accuracy	81.3% (26/32)	87.1% (27/31)	87.1% (27/31)	90.3% (28/31)	100% (30/30)	100% (31/31)	100% (31/31)	100% (31/31)	86.7% (26/30)	87.1% (27/31)	87.1% (27/31)	90.3% (28/31)	

Integrated judgements were made by the majority of each laboratory's final judgement.

Third data analysis based on the criteria for the proposed protocol: The highest criteria among the three assay results was selected as the final judgement

a: A: Original: Final judgement of positive when positive results were obtained in at least one of three assays

B: Final judgement based on the mean value of three assays.

C : Final judgement based on the majority of three assay results

D : Final judgement based on the first assay results

b: See, tables 12A to 12D

c: See, tables 23A to 23D

Table 27A Fourth data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: The highest criteria among the three assay results was selected as the final judgement

ROS ass (atlas) p	say Validation data attern A		La	b 1			La	ıb 2			La	ıb 3		
	Chemicals		Assay		Final		Assay		Final		Assay		Final	Integrated Judgement ^a
No.	Name	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	1st	2nd	3rd	judg- ment	
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	(+)	(-)	(-)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	ND
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	(-)	(-)	(-)	(-)	+	+	+	+	+
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	+
II - 20	Avobenzone	+	+	+	+	(±)	(±)	(±)	(±)	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} Photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgement only when precipitation or coloration is observed at 200 μM)

^{±:} Weakly photoreactive (Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgement only when precipitation or coloration is observed at 200 µM) -: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgement only when precipitation or coloration is observed at

^{(+):} Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results at 2 μM were not used for the judgement of integrated results or data analyses. (\pm): Ros assay was conducted at 2 μ M due to precipitation at 20 μ M and 200 μ M. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results \geq 20,

<70), the results shown in the parenthesis since the results at 2 µM were not used for the judgement of integrated results or data analyses.

(-): Ros assay was conducted at 2 µM due to precipitation at 20µM and 200µM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 µM were not used for the judgement of integrated results or data analyses.

ND: not determined due to precipitation a : Integrated judgements were made by the majority of each laboratory's final judgement.

Table 27A Fourth data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: The highest criteria among the three assay results was selected as the final judgement (continued)

ROS ass (atlas) p	ay Validation data attern A		La	ıb 1			La	b 2			La	b 3		
	Chemicals		Assay		Final judg-		Assay		Final judg-		Assay		Final judg-	Integrated Judgemen
No.	Name	1st	2nd	3rd	ment	1st	2nd	3rd	ment	1st	2nd	3rd	ment	
II - 24	Aspirin	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 25	Benzocaine	-	±	-	±	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	±	±	-	-	-	-	-
II - 27	Penicillin G	-	±	±	±	±	±	±	±	-	-	-	-	±
II - 28	Phenytoin	±	±	±	±	±	±	±	±	±	-	±	±	±
II - 29	Bumetrizole	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	±	±	-	±	-	±	-	±	-	-	-	-	±
II - 32	Cinnamic acid	±	+	±	+	±	±	±	±	-	-	-	-	I
II - 33	Drometrizole	-	-	-	-	-	-	-	-	(-)	(-)	(-)	(-)	-
II - 34	L-Histidine	±	+	±	+	±	-	±	±	±	±	±	±	±
II - 35	Methylbenzylidene camphor	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 36	Octrizole	(±)	(±)	(±)	(±)	(-)	(±)	(-)	(±)	-	-	-	-	-
II - 37	Octyl methacrylate	-	+	+	+	-	-	-	-	-	-	-	-	-
II - 38	Octyl methoxycinnamate	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 39	Octyl salicylate	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 40	PABA	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 41	SDS	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 42	UV-571	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	ND

^{+:} Photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 µM: 20 µM without photodegradation is used for judgement only when precipitation or ±: Weakly photoreactive (Singlet oxygen results <25 and Superoxide results <25 and Superoxide results <25 and Superoxide results <26 and Superoxide results <26 and Superoxide results <27 and Superoxide results <28 and Superoxide results

observed at 200 µM)

^{-:} Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgement only when precipitation or coloration is observed at

^{(+):} Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and Superoxide results ≥70, Singlet oxygen results <70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

⁽ \pm). Ros assay was conducted at 2 μ M due to precipitation at 20 μ M and 200 μ M. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results \geq 20, <70), the results shown in the parenthesis since the results at 2 μ M were not used for the judgement of integrated results or data analyses. (-): Ros assay was conducted at 2 µM due to precipitation at 20µM and 200µM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 µM were not used for the judgement of integrated results or data analyses.

I : inconclusive(The results does not meet the photoreactive , weakly photoreactive or Non-photoreactive criterion)

ND: not determined due to precipitation

a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 27B Fourth data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the mean value of three assays

	say Validation data attern B		La	ıb 1			La	ıb 2			La	b 3		
No.	Chemicals Name	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	Integrated Judgement ^a
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	(+)	(-)	(-)	(-)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	ND
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	(-)	(-)	(-)	(-)	+	+	+	+	+
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	+
II - 20	Avobenzone	+	+	+	+	(±)	(±)	(±)	(±)	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} Photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 µM: 20 µM without photodegradation is used for judgement only when precipitation or coloration is observed at 200 µM)

 $[\]pm$: Weakly photoreactive (Singlet oxygen results <25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgement only when precipitation or coloration is observed at 200 μ M)

^{-:} Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 200 μM: 20 μM without photodegradation is used for judgement only when precipitation or coloration is observed at 200 μM)

^{(+):} Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

^{(±):} Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.</p>

^{(-):} Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

Note that the precipitation

ND: not determined due to precipitation
a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 27B Fourth data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the mean value of three assays (continued)

ROS ass (atlas) p	ay Validation data attern B		La	ıb 1			La	ıb 2			La	b 3		
No.	Chemicals Name	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	Integrated Judgement ^a
II - 24	Aspirin	-		-	_		-	-	_	_	_	-	_	_
II - 25	Benzocaine	-	±	-	-	-	-	-	-	-	-	-	-	-
II - 26	Erythromycin	-	-	-	-	-	-	±	-	-	-	-	-	-
II - 27	Penicillin G	-	±	±	±	±	±	±	±	-	-	-	-	±
II - 28	Phenytoin	±	±	±	±	±	±	±	±	±	-	±	±	±
II - 29	Bumetrizole	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	±	±	-	±	-	±	-	-	-	-	-	-	-
II - 32	Cinnamic acid	±	+	±	±	±	±	±	±	-	-	-	-	±
II - 33	Drometrizole	-	-	-	-	-	-	-	-	(-)	(-)	(-)	(-)	-
II - 34	L-Histidine	±	+	±	±	±	-	±	±	±	±	±	±	±
II - 35	Methylbenzylidene camphor	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 36	Octrizole	(±)	(±)	(±)	(±)	(-)	(±)	(-)	(-)	-	-	=	-	-
II - 37	Octyl methacrylate	-	+	+	+	-	-	-	-	-	-	-	-	-
II - 38	Octyl methoxycinnamate	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 39	Octyl salicylate	-	-	-	-	-	-	-	-	-	-	=	-	-
II - 40	PABA	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 41	SDS	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 42	UV-571	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	ND

^{+:} Photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 µM: 20 µM without photodegradation is used for judgement only when precipitation or coloration is observed at 200 µM)

^{±:} Weakly photoreactive (Singlet oxygen results <25 and Superoxide results <20, <70 at 200 µM: 20 µM without photodegradation is used for judgement only when precipitation or coloration is observed at 200 µM)

^{-:} Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 200 μM: 20 μM without photodegradation is used for judgement only when precipitation or coloration is observed at 200 μM)

^{(+):}Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and Superoxide results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(±): Ros assay was conducted at 2 µM due to precipitation at 20µM and 200µM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20,

<70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-):Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at $2 \mu M$ were not used for the judgement of integrated results or data analyses. ND: not determined due to precipitation

a: Integrated judgements were made by the majority of each laboratory's final judgement

Table 27C Fourth data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the majority of three assay results

ROS ass (atlas) p	say Validation data attern C		La	ıb 1			La	ıb 2			La	b 3		
No.	Chemicals Name	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	Integrated Judgement ^a
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	(+)	(-)	(-)	(-)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	ND
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	(-)	(-)	(-)	(-)	+	+	+	+	+
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	+
II - 20	Avobenzone	+	+	+	+	(±)	(±)	(±)	(±)	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} Photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results \geq 25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgement only when precipitation or coloration is observed at 200 µM)

^{±:} Weakly photoreactive (Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 μM: 20 μM without photodegradation is used for judgement only when precipitation or coloration is observed at 200 μM)

-: Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 200 μM: 20 μM without photodegradation is used for judgement only when precipitation or coloration is observed at

²⁰⁰ μM)
(+): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet

 ^{(±):} Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results ≥25 and Superoxide results at 2 μM were not used for the judgement of integrated results or data analyses.
 (±): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.
 (-): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.
 ND: not determined due to precipitation at 10μM were not used for the judgement of integrated results or data analyses.
 ND: not determined due to precipitation at 10μM were not used for the judgement.

Table 27C Fourth data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the majority of three assay results (continued)

ROS ass (atlas) p	say Validation data attern C		La	ıb 1			La	ıb 2			La	b 3		
No.	Chemicals Name	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	Integrated Judgement ^a
II - 24	Aspirin	-	- Ziid	- Jiu	-	-	- Znu	- Jiu	-	-	21Iu	- Jiu	_	
II - 25	Benzocaine	_	±	_		_	<u> </u>	_	_	_		_	_	-
II - 26	Erythromycin	-	-	-	-	-	-	±	-	-	-	-	-	-
II - 27	Penicillin G	-	±	±	±	±	±	±	±	-	-	-	-	±
II - 28	Phenytoin	±	±	±	±	±	±	±	±	±	-	±	±	±
II - 29	Bumetrizole	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	±	±	-	±	-	±	-	-	-	-	-	-	-
II - 32	Cinnamic acid	±	+	±	±	±	±	±	±	-	-	-	-	±
II - 33	Drometrizole	-	-	-	-	-	-	-	-	(-)	(-)	(-)	(-)	-
II - 34	L-Histidine	±	+	±	±	±	-	±	±	±	±	±	±	±
II - 35	Methylbenzylidene camphor	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 36	Octrizole	(±)	(±)	(±)	(±)	(-)	(±)	(-)	(-)	-	-	-	-	-
II - 37	Octyl methacrylate	-	+	+	+	-	-	-	-	-	-	-	-	-
II - 38	Octyl methoxycinnamate	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 39	Octyl salicylate	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 40	PABA	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 41	SDS	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 42	UV-571	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	ND

^{+:} Photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 µM: 20 µM without photodegradation is used for judgement only when precipitation or coloration is observed at 200 uM)

^{±:} Weakly photoreactive (Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgement only when precipitation or coloration is observed at 200 uM)

^{-:} Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgement only when precipitation or coloration is observed at

 ^{(±):} Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and Superoxide results ≥20 and Superoxide results ≥25 and Superoxide results ≥25 and Superoxide results <70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.
 (±): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20,

<70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 µM were not used for the judgement of integrated results or data analyses. ND: not determined due to precipitation

a: Integrated judgements were made by the majority of each laboratory's final judgement

Table 27D Fourth data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the single assay results

	O						J	_				- 0		
	say Validation data attern D		La	ıb 1			La	ıb 2			La	ıb 3		
No.	Chemicals Name	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	Integrated Judgemen
II - 1	Acridine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 2	Acridine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 3	Amiodarone HCl	(+)	(-)	(-)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	ND
II - 4	Chlorpromazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 5	Doxycycline HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 6	Fenofibrate	+	+	+	+	(-)	(-)	(-)	(-)	+	+	+	+	+
II - 7	Furosemide	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 8	Ketoprofen	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 9	6-methylcoumarine	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 10	8-MOP	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 11	Nalidixic acid	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 12	Nalidixic acid (Na salt)	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 13	Norfloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 14	Ofloxacin	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 15	Piroxicam	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 16	Promethazine HCl	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 18	Tetracycline	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 19	Anthracene	+	+	+	+	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	+
II - 20	Avobenzone	+	+	+	+	(±)	(±)	(±)	(±)	+	+	+	+	+
II - 21	Bithionol	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 22	Hexachlorophene	+	+	+	+	+	+	+	+	+	+	+	+	+
II - 23	Rose bengal	+	+	+	+	+	+	+	+	+	+	+	+	+

^{+:} Photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgement only when precipitation or coloration is observed at 200 μM)

ND: not determined due to precipitation
a: Integrated judgements were made by the majority of each laboratory's final judgement

 $[\]pm$: Weakly photoreactive (Singlet oxygen results <25 and Superoxide results \ge 20, <70 at 200 μM: 20 μM without photodegradation is used for judgement only when precipitation or coloration is observed at 200 μM)

^{-:} Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgement only when precipitation or coloration is observed at

^{(+):} Ros assay was conducted at 2 µM due to precipitation at 20µM and 200µM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results at 2 µM were not used for the judgement of integrated results or data analyses.

(±): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20,

 ⁽⁻²⁾ No assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.
 (-2) Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

Table 27D Fourth data analysis based on the criteria for the proposed protocol: Judgement from the Phase 2 results: Final judgement based on the single assay results (continued)

ROS ass (atlas) p	ay Validation data attern D		La	ıb 1			La	b 2			La	b 3		
No.	Chemicals Name	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	1st	Assay 2nd	3rd	Final judg- ment	Integrated Judgemen
II - 24	Aspirin	-	_	_	_	_	_	-	_	-	_		_	
II - 25	Benzocaine	_	±	_	-	_	_	_	-	_	_	_	_	_
II - 26	Erythromycin	-	_	_	-	-	-	±	-	-	_	_	-	-
II - 27	Penicillin G	-	±	±	-	±	±	±	±	-	-	-	-	-
II - 28	Phenytoin	±	±	±	±	±	±	±	±	±	-	±	±	±
II - 29	Bumetrizole	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 30	Camphor sulfonic acid	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 31	Chlorhexidine	±	±	-	±	-	±	-	-	-	-	-	-	-
II - 32	Cinnamic acid	±	+	±	±	±	±	±	±	-	-	-	-	±
II - 33	Drometrizole	-	-	-	-	-	-	-	-	(-)	(-)	(-)	(-)	-
II - 34	L-Histidine	±	+	±	±	±	-	±	±	±	±	±	±	±
II - 35	Methylbenzylidene camphor	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 36	Octrizole	(±)	(±)	(±)	(±)	(-)	(±)	(-)	(-)	-	-	-	-	-
II - 37	Octyl methacrylate	-	+	+	-	-	-	-	-	-	-	-	-	-
II - 38	Octyl methoxycinnamate	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 39	Octyl salicylate	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 40	PABA	-	-	-	-	-	-	-	-	-	-	-	-	-
II - 41	SDS	-	-	-	-	(-)	(-)	(-)	(-)	-	-	-	-	-
II - 42	UV-571	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	ND

^{+:} Photoreactive (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 µM: 20 µM without photodegradation is used for judgement only when precipitation or

coloration is observed at 200 μ M) \pm : Weakly photoreactive (Singlet oxygen results <25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgement only when precipitation or coloration is observed at 200 µM)

^{-:} Non-photoreactive (Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgement only when precipitation or coloration is observed at

 ^{(+):} Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and Superoxide results ≥25 and Superoxide results ≥25 and Superoxide results ≥25 and Superoxide results ≥25 and Superoxide results at 2 μM were not used for the judgement of integrated results or data analyses.
 (±): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20,

<70), the results shown in the parenthesis since the results at 2 μM were not used for the judgement of integrated results or data analyses.

(-): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20),

the results shown in the parenthesis since the results at $2 \mu M$ were not used for the judgement of integrated results or data analyses ND: not determined due to precipitation

a: Integrated judgements were made by the majority of each laboratory's final judgement.

Table 28A Fourth data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: The highest criteria among the three assay results was selected as the final judgement

Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

Lab 1			ROS		Total
Lau I		+	±	-	Total
Phototoxic	+	21	0	0	21ª
Phototoxic	-	3	4	9	16 ^b
Total	24	4	9	37	

- a: One of 22 phototoxic chemicals were not evaluated at 20 or $200\mu M$ due to precipitation (Amiodarone HCl).
- b: Three of 19 non-phototoxic chemicals were not evaluated at 20 or $200\mu M$ due to precipitation (Bumetrizole, Octizole, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Accuracy: 91.9% (34/37)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals;

Accuracy: 81.1%(30/37)

Lab 2			ROS		Total
Lau 2		+	±	-	10141
Dhatataria	+	18	0	0	18 ^c
Phototoxic	-	0	6	8	14 ^d
Total	18	6	8	32	

- c: Four of 22 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl, Fenofibrate, Anthracene, Avobenzone).
- d: Five of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Bumetrizole, Octrizole, Octyl methoxycinnamate, SDS, UV-571).

When the \pm : Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (18/18) Specificity: 100% (14/14)

Positive predictivity: 100% (18/18) Negative predictivity: 100% (14/14)

Accuracy: 100% (32/32)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (18/18) Specificity: 57.1%(8/14)

Positive predictivity: 75.0%(18/24)

Negative predictivity: 100% (8/8)

Accuracy: 81.3%(26/32)

Lab 3			ROS		Total
Lau 3		+	±	-	10141
Dhototovio	+	20	0	0	20 ^e
Phototoxic	-	0	2	15	17 ^f
Total	20	2	15	37	

- e: Two of 22 phototoxic chemicals were not evaluated at 20 or $200\mu M$ due to precipitation (Amiodarone HCl, Anthracene)
- f: Two of 19 non-phototoxic chemicals were not evaluated at 20 or 200 μ M due to precipitation (Drometrizole, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (20/20) Specificity: 100% (17/17)

Positive predictivity: 100% (20/20) Negative predictivity: 100% (17/17)

Accuracy: 100% (37/37)

When the \pm : Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (20/20) Specificity: 88.2%(15/17)

Positive predictivity: 90.9%(20/22) Negative predictivity: 100% (15/15)

Accuracy: 94.6%(35/37)

Integrated	d		ROS		Total			
Judgemer	ıt	+	+ ± -					
Phototoxic	+	21	0	0	21 ^g			
Phototoxic	-	0	4	13	17 ^h			
Total	21	4	13	38				

- g: One of 22 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl) .
- h: Two of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation or the results does not meet the photoreactive, weakly photoreactive or non-photoreactive criterion (Cinnamic acid, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (21/21) Specificity: 100% (17/17)
Positive predictivity: 100% (21/21) Negative predictivity: 100% (17/17)

Accuracy: 100% (38/38)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (21/21) Specificity: 76.5%(13/17) Positive predictivity: 84.0%(21/25) Negative predictivity: 100% (13/13)

Accuracy: 89.5%(34/38)

Table 28B Fourth data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: Final judgement based on the mean value of three assays

Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

Lab 1			Total		
		+	±	-	Total
	+	21	0	0	21 ^a
Phototoxic	-	1	5	10	16 ^b
Total		22	5	10	37

- a: One of 22 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl).
- b: Three of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Bumetrizole, Octizole, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (21/21) Specificity: 93.8% (15/16) Positive predictivity: 95.5% (21/22) Negative predictivity: 100% (15/15)

Accuracy: 97.3% (36/37)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals;

Sensitivity: 100% (21/21) Specificity: 62.5% (10/16) Positive predictivity: 77.8%(21/27) Negative predictivity: 100% (10/10)

Accuracy: 83.8%(31/37)

Lab 2			Total		
		+	±	-	Total
	+	18	0	0	18 ^c
Phototoxic	-	0	4	10	14 ^d
Total		18	4	10	32

- c: Four of 22 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl, Fenofibrate, Anthracene, Avobenzone).
- d: Five of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Bumetrizole, Octrizole, Octyl methoxycinnamate, SDS, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (18/18) Specificity: 100% (14/14)

Negative predictivity: 100% (14/14) Positive predictivity: 100% (18/18)

Accuracy: 100% (32/32)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (18/18) Specificity: 71.4%(10/14)

Positive predictivity: 81.8%(18/22) Negative predictivity: 100% (10/10)

Accuracy: 87.5%(28/32)

Lab 3			ROS			
		+	±	-	Total	
DI	+	20	0	0	20 ^e	
Phototoxic	-	0	2	15	17 ^f	
Total		20	2	15	37	

- e: Two of 22 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl, Anthracene)
- f: Two of 19 non-phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Drometrizole, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (20/20) Specificity: 100% (17/17)

Positive predictivity: 100% (20/20) Negative predictivity: 100% (17/17)

Accuracy: 100% (37/37)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (20/20) Specificity: 88.2%(15/17)

Accuracy: 94.6%(35/37)

Positive predictivity: 90.9%(20/22) Negative predictivity: 100% (15/15)

Integrated			Total		
Judgemen	Judgement		±	-	Total
DI	+	21	0	0	21 ^g
Phototoxic	-	0	4	14	18 ^h
Total		21	4	14	39

- g: One of 22 phototoxic chemicals were not evaluated at 20 or $200\mu M$ due to precipitation (Amiodarone HCl)
- h: One of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (21/21) Specificity: 100% (18/18) Positive predictivity: 100% (21/21) Negative predictivity: 100% (18/18)

Accuracy: 100% (39/39)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (21/21) Specificity: 77.8%(14/18) Negative predictivity: 100% (14/14) Positive predictivity: 84.0%(21/25)

Accuracy: 89.7%(35/39)

Table 28C Fourth data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: Final judgement based on the majority of three assav results

Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

Lab 1			Total		
		+	±	-	Total
DI	+	21	0	0	21 ^a
Phototoxic	-	1	5	10	16 ^b
Total		22	5	10	37

a: One of 22 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl).

b: Three of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Bumetrizole, Octizole, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (21/21) Specificity: 93.8% (15/16) Positive predictivity: 95.5% (21/22) Negative predictivity: 100% (15/15)

Accuracy: 97.3% (36/37)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (21/21) Specificity: 62.5% (10/16)

Positive predictivity: 77.8%(21/27) Negative predictivity: 100% (10/10)

Accuracy: 83.8%(31/37)

Lab 2			Total		
		+	±	-	Total
	+	18	0	0	18 ^c
Phototoxic	-	0 4 1	10	14 ^d	
Total		18	4	10	32

c: Four of 22 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl, Fenofibrate, Anthracene, Avobenzone).

d: Five of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Bumetrizole, Octrizole, Octyl methoxycinnamate, SDS, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (18/18) Specificity: 100% (14/14)

Negative predictivity: 100% (14/14) Positive predictivity: 100% (18/18)

Accuracy: 100% (32/32)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (18/18) Specificity: 71.4%(10/14)

Positive predictivity: 81.8%(18/22) Negative predictivity: 100% (10/10)

Accuracy: 87.5%(28/32)

Lab 3			Total		
		+	±	-	Total
Phototoxic	+	20	0	0	20 ^e
	-	0	2	15	17 ^f
Total		20	2	15	37

e: Two of 22 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl, Anthracene)

f: Two of 19 non-phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Drometrizole, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (20/20) Specificity: 100% (17/17) Positive predictivity: 100% (20/20) Negative predictivity: 100% (17/17)

Accuracy: 100% (37/37)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (20/20) Specificity: 88.2%(15/17)

Positive predictivity: 90.9%(20/22) Negative predictivity: 100% (15/15)

Accuracy: 94.6%(35/37)

Integrated Judgement			ROS			
		+	±	-	Total	
DI	+	21	0	0	21 ^g	
Phototoxic	-	0	4	14	18 ^h	
Total		21	4	14	39	

g: One of 22 phototoxic chemicals were not evaluated at 20 or $200\mu M$ due to precipitation (Amiodarone HCl)

h: One of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (21/21) Specificity: 100% (18/18) Positive predictivity: 100% (21/21) Negative predictivity: 100% (18/18)

Accuracy: 100% (39/39)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (21/21) Specificity: 77.8%(14/18) Negative predictivity: 100% (14/14) Positive predictivity: 84.0%(21/25)

Accuracy: 89.7%(35/39)

Table 28D Fourth data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results: Final judgement based on the Final judgement based on the single assay results

Sensitivity, Specificity, Positive predictivity, Negative predictivity, Accuracy (Phototoxic vs. ROS assay)

Lab 1			ROS				
		+	±	-	Total		
DI	+	21	0	0	21 ^a		
Phototoxic	-	0	4	12	16 ^b		
Total		21	4	12	37		

- a: One of 22 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl).
- b: Three of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Bumetrizole, Octizole, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (21/21) Specificity: 100% (16/16)

Positive predictivity: 100% (21/21) Negative predictivity: 100% (16/16)

Accuracy: 100% (37/37)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (21/21) Specificity: 75.0% (12/16)

Positive predictivity: 84.0%(21/25) Negative predictivity: 100% (12/12)

Accuracy: 89.2%(33/37)

Lab 2			Total		
		+	±	-	10141
	+	18	0	0	18 ^c
Phototoxic	-	0	4	10	14 ^d
Total		18	4	10	32

- c: Four of 22 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl, Fenofibrate, Anthracene, Avobenzone).
- d: Five of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Bumetrizole, Octrizole, Octyl methoxycinnamate, SDS, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (18/18) Specificity: 100% (14/14)

Negative predictivity: 100% (14/14) Positive predictivity: 100% (18/18)

Accuracy: 100% (32/32)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals;

Sensitivity: 100% (18/18) Specificity: 71.4%(10/14)

Positive predictivity: 81.8%(18/22) Negative predictivity: 100% (10/10)

Accuracy: 87.5%(28/32)

Lab 3			ROS				
		+	±	-	Total		
71	+	20	0	0	20 ^e		
Phototoxic	-	0	2	15	17 ^f		
Total		20	2	15	37		

- e: Two of 22 phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (Amiodarone HCl, Anthracene)
- f: Two of 19 non-phototoxic chemicals were not evaluated at 20 or 200 µM due to precipitation (Drometrizole, UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (20/20) Specificity: 100% (17/17)

Positive predictivity: 100% (20/20) Negative predictivity: 100% (17/17)

Accuracy: 100% (37/37)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Sensitivity: 100% (20/20) Specificity: 88.2%(15/17)

Positive predictivity: 90.9%(20/22) Negative predictivity: 100% (15/15)

Accuracy: 94.6%(35/37)

Integrated Judgement			ROS				
		+	±	-	Total		
DI	+	21	0	0	21 ^g		
Phototoxic	-	0	3	15	18 ^h		
Total		21	3	15	39		

- g: One of 22 phototoxic chemicals were not evaluated at 20 or $200\mu M$ due to precipitation (Amiodarone HCl)
- h: One of 19 non-phototoxic chemicals were not evaluated at 20 or 200µM due to precipitation (UV-571).

When the ±: Weakly photoreactive chemicals were defined as non-phototoxic chemicals;

Sensitivity: 100% (21/21) Specificity: 100% (18/18) Positive predictivity: 100% (21/21) Negative predictivity: 100% (18/18)

Accuracy: 100% (39/39)

When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals; Specificity: 83.3%(15/18) Sensitivity: 100% (21/21) Negative predictivity: 100% (15/15) Positive predictivity: 87.5%(21/24)

Accuracy: 92.3%(36/39)

Table 29 Fourth data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results

					Draf	t criteria for th	ne final judger	nent ^a					
					Data analysis based on the criteria for the fourth data analysis								
Lab 1		Orig	ginal				toreactive che ototoxic chem		When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals				
	A	В	С	D	A	В	С	D	A	В	С	D	
Sensitivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
	(22/22)	(21/21)	(21/21)	(22/22)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	
Specificity	33.3%	41.7%	41.7%	58.3%	81.3%	93.8%	93.8%	100%	56.3%	62.5%	62.5%	75.0%	
	(4/12)	(5/12)	(5/12)	(7/12)	(13/16)	(15/16)	(15/16)	(16/16)	(9/16)	(10/16)	(10/16)	(12/16)	
Positive predictivity	73.3%	75.0%	75.0%	81.5%	87.5%	95.5%	95.5%	100%	75.0%	77.8%	77.8%	84.0%	
	(22/30)	(21/28)	(21/28)	(22/27)	(21/24)	(21/22)	(21/22)	(21/21)	(21/28)	(21/27)	(21/27)	(21/25)	
Negative predictivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
	(4/4)	(5/5)	(5/5)	(7/7)	(13/13)	(15/15)	(15/15)	(16/16)	(9/9)	(10/10)	(10/10)	(12/12)	
Accuracy	76.5%	78.8%	78.8%	85.3%	91.9%	97.3%	97.3%	100%	81.1%	83.8%	83.8%	89.2%	
	(26/34)	(26/33)	(26/33)	(29/34)	(34/37)	(36/37)	(36/37)	(37/37)	(30/37)	(31/37)	(31/37)	(33/37)	

					Draf	t criteria for th	ne final judger	nent ^a				
						Da	ta analysis ba	sed on the crit	eria for the fo	urth data anal	ysis	_
Lab 2		Orig	ginal				toreactive che ototoxic chem			: Weakly pho efined as photo		
	A	В	C	D	A	В	C	D	A	В	C	D
Sensitivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(20/20)	(20/20)	(20/20)	(20/20)	(18/18)	(18/18)	(18/18)	(18/18)	(18/18)	(18/18)	(18/18)	(18/18)
Specificity	36.4%	60.0%	60.0%	60.0%	100%	100%	100%	100%	57.1%	71.4%	71.4%	71.4%
	(4/11)	(6/10)	(6/10)	(6/10)	(14/14)	(14/14)	(14/14)	(14/14)	(8/14)	(10/14)	(10/14)	(10/14)
Positive predictivity	74.1%	83.3%	83.3%	83.3%	100%	100%	100%	100%	75.0%	81.8%	81.8%	81.8%
	(20/27)	(20/24)	(20/24)	(20/24)	(18/18)	(18/18)	(18/18)	(18/18)	(18/24)	(18/22)	(18/22)	(18/22)
Negative predictivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	(4/4)	(6/6)	(6/6)	(6/6)	(14/14)	(14/14)	(14/14)	(14/14)	(8/8)	(10/10)	(10/10)	(10/10)
Accuracy	77.4%	86.7%	86.7%	86.7%	100%	100%	100%	100%	81.3%	87.5%	87.5%	87.5%
	(24/31)	(26/30)	(26/30)	(26/30)	(32/32)	(32/32)	(32/32)	(32/32)	(26/32)	(28/32)	(28/32)	(28/32)

a: A: Original: Final judgement of positive when positive results were obtained in at least one of three assays

Data analysis based on the criteria for the secondary data analysis: Final judgement of photoreactive or weakly photoreactive or weakly photoreactive results were obtained in at least one of three assays

B: Final judgement based on the mean value of three assays.

C: Final judgement based on the majority of three assay results

D : Final judgement based on the single assay results

Table 29 Fourth data analysis based on the criteria for the proposed protocol: Contingency table for Phase 2 results (continued).

					Draf	t criteria for th	ne final judger	ment ^a				
						Da	ta analysis ba	sed on the crit	eria for the fo	urth data anal	ysis	
Lab 3		Oriș	ginal				toreactive che ototoxic chem		When the ±: Weakly photoreactive chemicals were defined as phototoxic chemicals			
	A	В	С	D	A	В	С	D	A	В	С	D
Sensitivity	100% (21/21)	100% (21/21)	100% (21/21)	100% (21/21)	100% (20/20)	100% (20/20)	100% (20/20)	100% (20/20)	100% (20/20)	100% (20/20)	100% (20/20)	100% (20/20)
Specificity	81.8% (9/11)	81.8% (9/11)	81.8% (9/11)	81.8% (9/11)	100% (17/17)	100% (17/17)	100% (17/17)	100% (17/17)	88.2% (15/17)	88.2% (15/17)	88.2% (15/17)	88.2% (15/17)
Positive predictivity	91.3% (21/23)	91.3% (21/23)	91.3% (21/23)	91.3% (21/23)	100% (20/20)	100% (20/20)	100% (20/20)	100% (20/20)	90.9% (20/22)	90.9% (20/22)	90.9% (20/22)	90.9% (20/22)
Negative predictivity	100% (9/9)	100% (9/9)	100% (9/9)	100% (9/9)	100% (17/17)	100% (17/17)	100% (17/17)	100% (17/17)	100% (15/15)	100% (15/15)	100% (15/15)	100% (15/15)
Accuracy	93.8% (30/32)	93.8% 93.8% 93.8% 93.8%				100% (37/37)	100% (37/37)	100% (37/37)	94.6% (35/37)	94.6% (35/37)	94.6% (35/37)	94.6% (35/37)

a: A: Original: Final judgement of positive when positive results were obtained in at least one of three assays

Data analysis based on the criteria for the secondary data analysis: Final judgement of photoreactive or weakly photoreactive or weakly photoreactive results were obtained in at least one of three assays

B: Final judgement based on the mean value of three assays.

C : Final judgement based on the majority of three assay results

D : Final judgement based on the single assay results

Table 30 Fourth data analysis based on the criteria for the proposed protocol: Contingency table for integrated judgement results.

					Draf	t criteria for th	he final judger	ment ^a						
					Data analysis based on the criteria for the fourth data analysis ^c									
Phase 2		Orig	inal ^b				toreactive che ototoxic chem			: Weakly pho				
	A	В	C	D	A	В	С	D	A	В	С	D		
Sensitivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%		
	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)	(21/21)		
Specificity	45.5%	60.0%	60.0%	70.0%	100%	100%	100%	100%	76.5%	77.8%	77.8%	83.3%		
	(5/11)	(6/10)	(6/10)	(7/10)	(17/17)	(18/18)	(18/18)	(18/18)	(13/17)	(14/18)	(14/18)	(15/18)		
Positive predictivity	77.8%	84.0%	84.0%	87.5%	100%	100%	100%	100%	84.0%	84.0%	84.0%	87.5%		
	(21/27)	(21/25)	(21/25)	(21/24)	(21/21)	(21/21)	(21/21)	(21/21)	(21/25)	(21/25)	(21/25)	(21/24)		
Negative predictivity	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%		
	(5/5)	(6/6)	(6/6)	(7/7)	(17/17)	(18/18)	(18/18)	(18/18)	(13/13)	(14/14)	(14/14)	(15/15)		
Accuracy	81.3%	87.1%	87.1%	90.3%	100%	100%	100%	100%	89.5%	89.7%	89.7%	92.3%		
	(26/32)	(27/31)	(27/31)	(28/31)	(38/38)	(39/39)	(39/39)	(39/39)	(34/38)	(35/39)	(35/39)	(36/39)		

Integrated judgements were made by the majority of each laboratory's final judgement.

a: A: Original: Final judgement of positive when positive results were obtained in at least one of three assays

Data analysis based on the criteria for the secondary data analysis: Final judgement of photoreactive or weakly photoreactive or weakly photoreactive or weakly photoreactive results were obtained in at least one of three assays

B: Final judgement based on the mean value of three assays.

C : Final judgement based on the majority of three assay results

D : Final judgement based on the single assay results

b: See, tables 12A to 12D

c: See, tables 27A to 27D

Appendix 1 Chemical structures of the test chemicals for the Phase 1 study

No.	Chemical name	CAS No.	Molecular weight	Chemical structure
I-1	5-FU	51-21-8	130.1	FNH
I-2	8-MOP	298-81-7	216.2	OCH ₃
I-3	Amiodarone HCl	19774-82-4	681.8	
I-4	Chlorpromazine HCl	69-09-0	355.3	
I-5	Diclofenac	15307-79-6	318.1	
I-6	Doxycycline HCl	10592-13-9	512.9	OH O OH O OH
I-7	Furosemide	54-31-9	330.7	HN CI ON NH2
I-8	Ketoprofen	22071-15-4	254.3	OH ₃ OH
I-9	Levofloxacin	100986-85-4	361.4	H ₃ C H ₃
I-10	Norfloxacin	70458-96-7	319.3	F N O O H
I-11	Omeprazole	73590-58-6	345.4	N S S S S S S S S S S S S S S S S S S S
I-12	Quinine HCl	6119-47-7	396.9	HON
I-13	Sulisobenzone	4065-45-6	308.3	O OH O=S=O OH

Appendix 2 Chemical structures of the test chemicals for the Phase 2 study

NO.	Chemical name	CAS No. ^{a)}	Molecular weight	Chemical structure
Phot	otoxic drugs			
II-1	Acridine	260-94-6	179.2	
II-2	Acridine HCl	17784-47-3	215.7	HCI
II-3	Amiodarone HCl	19774-82-4	681.8	
II-4	Chlorpromazine HCl	69-09-0	355.3	Z Z Z CI
II-5	Doxycycline HCl	10592-13-9	480.9	OH O OH O O OH OH OH OH OH OH OH OH OH O
II-6	Fenofibrate	49562-28-9	360.8	
II-7	Furosemide	54-31-9	330.7	HN—SNH ₂
II-8	Ketoprofen	22071-15-4	254.3	CH ₃ OH
II-9	6-Methylcoumarine	92-48-8	160.2	H ₃ C
II-10	8-МОР	298-81-7	216.2	OCH ₃
П-11	Nalidixic acid	389-08-2	232.2	HO
II-12	Nalidixic acid (Na salt)	3374-05-8	254.2	NaO NaO CH ₃

Appendix 2 Chemical structures of the test chemicals for the Phase 2 study

NO.	Chemical name	CAS No. ^{a)}	Molecular weight	Chemical structure
II-13	Norfloxacin	70458-96-7	319.3	F OH
II-14	Ofloxacin	82419-36-1	361.4	F OH
II-15	Piroxicam	36322-90-4	331.4	O D D D D D D D D D D D D D D D D D D D
II-16	Promethazine HCl	58-33-3	320.9	S CH ₅ H ₅ C N CH ₅
II-17	Rosiglitazone	122320-73-4	357.4	O S N N N
II-18	Tetracycline	60-54-8	444.4	HO CH ₃ H ₃ C N CH ₃ OH OH OH OH OH
Phot	otoxic non-drug che	micals		
II-19	Anthracene	120-12-7	178.2	
II-20	Avobenzone	70356-09-1	310.39	H ₃ C CH ₃
II-21	Bithionol	97-18-7	356.1	OH OH CI
II-22	Hexachlorophene	70-30-4	406.9	CI CI CI CI OH OH
II-23	Rose bengal	632-69-9	1017.6	но о о

Appendix 2 Chemical structures of the test chemicals for the Phase 2 study

NO.	Chemical name	CAS No. ^{a)}	Molecular weight	Chemical structure
Non-	-phototoxic drugs			
II-24	Aspirin	50-78-2	180.2	OH
II-25	Benzocaine	94-09-7	165.2	H ₂ N O
II-26	Erythromycin	114-07-8	733.9	H.G. OH,
II-27	Penicillin G	113-98-4	372.5	H S O O O O O O O O O O O O O O O O O O
II-28	Phenytoin	57-41-0	252.3	HX NH
Non-	-phototoxic non-drug	g chemicals		
II-29	Bumetrizole	3896-11-5	315.8	OH N CI
II-30	Camphor sulfonic acid	3144-16-9	232.3	SO ₃ H
II-31	Chlorhexidine	55-56-1	505.5	De la
II-32	Cinnamic acid	140-10-3	148.2	ОН
II-33	Drometrizole	2440-22-4	225.25	N N N N N N N N N N N N N N N N N N N
II-34	L-Histidine	71-00-1	155.2	N HN NH ₂
II-35	Methylbenzylidene camphor	36861-47-9	254.4	A

Appendix 2 Chemical structures of the test chemicals for the Phase 2 study

NO.	Chemical name	CAS No. ^{a)}	Molecular weight	Chemical structure
II-36	Octrizole	3147-75-9	323.43	H _G C CH ₀
II-37	Octyl methacrylate	688-84-6	198.3	
II-38	Octyl methoxycinnamate	5466-77-3	290.4	H ₃ CO O
II-39	Octyl salicylate	118-60-5	250.3	OHOH
П-40	PABA	150-13-0	137.1	COOH NH ₂
II-41	SDS	151-21-3	288.4	H ₃ C Ng ² Ng ²
II-42	UV-571	125304-04-3	393.56	HO HO
Posi	tive/Negative control			
PC	Quinine HCl	6119-47-7	396.9	Z OH
NC	Sulizobenzone	4065-45-6	308.3	O OH O=\$=O OH

Appendix 3 Positive control and negative control data of Phase 1 study

Chemical Name : Qunine HCl

-			Singlet oxy	gen			-			Superoxide	anion		
Assay	Run# -	A440	(-)	A440((+)	Results*1	Assay	Run# -	A560	(-)	A560	(+)	Results*2
Assay	Kuii# –	Γest Chemical	Blank	Test Chemical	Blank	Results	Assay	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.869	0.873	0.394	0.867	469		1	0.036	0.032	0.394	0.036	350
1	2	0.875	0.880	0.411	0.873	458	1	2	0.034	0.047	0.406	0.040	363
1	3	0.871	0.882	0.416	0.875	449	1	3	0.045	0.030	0.411	0.061	357
	Mean	0.872	0.878	0.407	0.872	459		Mean	0.038	0.036	0.404	0.045	357
	1	0.867	0.880	0.407	0.869	451		1	0.037	0.033	0.396	0.036	348
2	2	0.878	0.889	0.418	0.882	451	2	2	0.035	0.052	0.399	0.050	353
2	3	0.877	0.879	0.420	0.871	447	2	3	0.041	0.033	0.415	0.066	362
	Mean	0.874	0.883	0.415	0.874	450		Mean	0.038	0.039	0.403	0.051	354
	1	0.890	0.886	0.395	0.877	486		1	0.035	0.033	0.415	0.039	371
3	2	0.884	0.891	0.408	0.885	469	3	2	0.035	0.048	0.412	0.044	367
3	3	0.879	0.892	0.412	0.884	459	3	3	0.042	0.032	0.425	0.057	373
	Mean	0.884	0.890	0.405	0.882	471		Mean	0.037	0.037	0.417	0.047	370
	1	0.860	0.871	0.390	0.864	463		1	0.036	0.033	0.387	0.058	332
4	2	0.860	0.870	0.405	0.864	449	4	2	0.034	0.035	0.383	0.041	329
4	3	0.873	0.875	0.413	0.867	453	4	3	0.041	0.030	0.389	0.058	328
	Mean	0.864	0.872	0.403	0.865	455		Mean	0.037	0.033	0.386	0.053	330
	1	0.859	0.859	0.399	0.850	452		1	0.041	0.030	0.394	0.038	342
5	2	0.852	0.876	0.406	0.868	438	5	2	0.035	0.058	0.386	0.056	340
3	3	0.866	0.871	0.415	0.863	441	3	3	0.041	0.031	0.406	0.057	354
	Mean	0.859	0.869	0.407	0.860	444		Mean	0.039	0.039	0.395	0.050	345
	1	0.853	0.868	0.382	0.861	464		1	0.040	0.029	0.393	0.036	344
6	2	0.850	0.865	0.398	0.858	445	6	2	0.035	0.045	0.403	0.042	359
6	3	0.864	0.865	0.401	0.857	455	6	3	0.043	0.031	0.414	0.055	362
	Mean	0.856	0.866	0.394	0.858	455		Mean	0.039	0.035	0.403	0.044	355

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$ *1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$: Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+): Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after exposure) В : Mean (Blank after exposure)

The optical absorbance values were rounded to the third decimal place. If the calculated "results" are different from the numerical results in the raw data sheets by the number of significant digits in the data sheet and the appendices are different, the data in the raw data sheet is used in the appendices.

Appendix 3 Positive control and negative control data of Phase 1 study

Chemical Name Qunine HCl

			Singlet oxy	ygen						Superoxide	A560(+) Test Chemical Blank 0.402 0.037 0.404 0.042 0.415 0.061 0.407 0.046 0.425 0.037 0.423 0.039 0.427 0.074 0.425 0.050 0.396 0.037 0.408 0.037 0.424 0.061 0.409 0.045 0.434 0.036 0.438 0.039 0.451 0.050 0.441 0.042 0.435 0.035		
A	Run# -	A440	(-)	A440((+)	Results*1	A 2222	Run#	A560	(-)	A5600	(+)	D 1, *2
Assay	Kull# –	Γest Chemical	Blank	Test Chemical	Blank	Results	Assay	Kull#	Test Chemical	Blank	Test Chemical	Blank	- Results*2
	1	0.846	0.871	0.380	0.862	457		1	0.037	0.028	0.402	0.037	353
7	2	0.851	0.877	0.395	0.868	447	7	2	0.035	0.046	0.404	0.042	359
,	3	0.857	0.880	0.401	0.871	447	,	3	0.040	0.031	0.415	0.061	364
	Mean	0.851	0.876	0.392	0.867	450		Mean	0.037	0.035	0.407	0.046	359
	1	0.824	0.853	0.372	0.849	444		1	0.038	0.033	0.425	0.037	375
8	2	0.840	0.859	0.391	0.852	442	8	2	0.036	0.048	0.423	0.039	375
0	3	0.845	0.861	0.398	0.853	440	8	3	0.040	0.032	0.427	0.074	375
	Mean	0.836	0.858	0.387	0.851	442		Mean	0.038	0.038	0.425	0.050	375
	1	0.865	0.884	0.386	0.878	473		1	0.043	0.032	0.396	0.037	343
9	2	0.848	0.886	0.398	0.879	444	9	2	0.034	0.043	0.408	0.037	364
9	3	0.867	0.880	0.407	0.873	455	9	3	0.040	0.030	0.424	0.061	374
	Mean	0.860	0.883	0.397	0.877	457		Mean	0.039	0.035	0.409	0.045	360
	1	0.870	0.865	0.379	0.856	483		1	0.054	0.033	0.434	0.036	370
10	2	0.855	0.880	0.389	0.874	458	10	2	0.045	0.033	0.438	0.039	384
10	3	0.880	0.873	0.400	0.865	472	10	3	0.061	0.029	0.451	0.050	381
	Mean	0.868	0.873	0.389	0.865	471		Mean	0.053	0.032	0.441	0.042	378
	1	0.862	0.863	0.373	0.853	480		1	0.062	0.029	0.435	0.035	359
11	2	0.859	0.873	0.392	0.865	458	11	2	0.040	0.030	0.444	0.038	390
11	3	0.886	0.875	0.406	0.867	472	11	3	0.063	0.029	0.446	0.054	369
	Mean	0.869	0.870	0.390	0.861	470		Mean	0.055	0.029	0.442	0.043	373
	1	0.873	0.844	0.372	0.836	496		1	0.039	0.030	0.435	0.037	383
12	2	0.857	0.844	0.386	0.842	466	12	2	0.035	0.052	0.434	0.040	386
12	3	0.879	0.851	0.395	0.845	479	12	3	0.042	0.032	0.449	0.075	394
	Mean	0.870	0.846	0.384	0.841	480		Mean	0.039	0.038	0.439	0.051	388
Mean for all	l assays	-	-	-	-	459	Mean for al	l assays	-	-	-	-	362
SD for all	assays	-	-	-	-	12	SD for all	assays	-	-	-	-	16
CV for all	assays	-	-	-	-	2.6	CV for all	assays	-	-	-	_	4.4

*1 : decrease of A440 x10 3 = (A440(-) - A440(+) - (A-B)) ×1000 A440(-) : Absorbance before light exposure at 440 nm A440(+) : Absorbance after light exposure at 440 nm : Mean (Blank before light exposure) Α : Mean (Blank after exposure)

В

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$ A560(-) : Absorbance before light exposure at 560 nm

: Absorbance after light exposure at 560 nm A560(+) : Mean (Blank before light exposure) Α

В : Mean (Blank after exposure)

Appendix 3 Positive control and negative control data of Phase 1 study

Laboratory :

Chemical Name : Sulisobenzone

			Singlet oxy	/gen						Superoxide	anion		
Aggari	Run# -	A440	(-)	A440	(+)	Results*1	Aggori	Run# -	A560	(-)	A560	(+)	Results*2
Assay	Kuli# –	Test Chemical	Blank	Test Chemical	Blank	Results	Assay	Kuli# -	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.888	0.873	0.886	0.867	-4		1	0.041	0.032	0.041	0.036	-9
1	2	0.884	0.880	0.882	0.873	-4	1	2	0.051	0.047	0.046	0.040	-14
1	3	0.892	0.882	0.889	0.875	-4	1	3	0.040	0.030	0.045	0.061	-4
	Mean	0.888	0.878	0.886	0.872	-4		Mean	0.044	0.036	0.044	0.045	-9
	1	0.895	0.880	0.893	0.869	-8		1	0.042	0.033	0.039	0.036	-15
2	2	0.903	0.889	0.897	0.882	-4	2	2	0.042	0.052	0.040	0.050	-14
2	3	0.900	0.879	0.897	0.871	-6	2	3	0.039	0.033	0.041	0.066	-10
	Mean	0.899	0.883	0.896	0.874	-6		Mean	0.041	0.039	0.040	0.051	-13
	1	0.888	0.886	0.886	0.877	-6		1	0.039	0.033	0.041	0.039	-8
3	2	0.892	0.891	0.885	0.885	-1	3	2	0.049	0.048	0.048	0.044	-10
3	3	0.891	0.892	0.892	0.884	-9	3	3	0.040	0.032	0.040	0.057	-10
	Mean	0.890	0.890	0.888	0.882	-5		Mean	0.043	0.037	0.043	0.047	-9
	1	0.892	0.871	0.886	0.864	-1		1	0.043	0.033	0.041	0.058	-21
4	2	0.886	0.870	0.877	0.864	2	4	2	0.050	0.035	0.048	0.041	-22
4	3	0.901	0.875	0.893	0.867	1	4	3	0.040	0.030	0.040	0.058	-20
	Mean	0.893	0.872	0.885	0.865	1		Mean	0.044	0.033	0.043	0.053	-21
	1	0.894	0.859	0.888	0.850	-4		1	0.042	0.030	0.040	0.038	-13
5	2	0.886	0.876	0.874	0.868	3	5	2	0.046	0.058	0.042	0.056	-15
3	3	0.886	0.871	0.879	0.863	-2	3	3	0.039	0.031	0.039	0.057	-11
	Mean	0.889	0.869	0.880	0.860	-1		Mean	0.042	0.039	0.040	0.050	-13
	1	0.881	0.868	0.874	0.861	-1		1	0.040	0.029	0.039	0.036	-10
6	2	0.872	0.865	0.864	0.858	0	6	2	0.045	0.045	0.040	0.042	-14
U	3	0.884	0.865	0.875	0.857	0	Ü	3	0.039	0.031	0.039	0.055	-8
	Mean	0.879	0.866	0.871	0.858	0		Mean	0.041	0.035	0.039	0.044	-11

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$ *1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 : Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α : Mean (Blank after exposure) : Mean (Blank after exposure) В В

Appendix 3 Positive control and negative control data of Phase 1 study

Chemical Name Sulisobenzone

			Singlet oxy	/gen						Superoxide	anion		
Aggary	Run# -	A440	(-)	A440((+)	Results*1	Aggari	Run#	A560	(-)	A5600	(+)	Results*2
Assay	Kuli# -	Test Chemical	Blank	Test Chemical	Blank	Results	Assay	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.882	0.871	0.857	0.862	16		1	0.040	0.028	0.042	0.037	-9
7	2	0.883	0.877	0.865	0.868	8	7	2	0.046	0.046	0.043	0.042	-14
,	3	0.896	0.880	0.871	0.871	16	,	3	0.038	0.031	0.040	0.061	-10
	Mean	0.887	0.876	0.864	0.867	13		Mean	0.041	0.035	0.042	0.046	-11
	1	0.874	0.853	0.849	0.849	18		1	0.039	0.033	0.040	0.037	-11
8	2	0.873	0.859	0.854	0.852	12	8	2	0.045	0.048	0.042	0.039	-16
0	3	0.876	0.861	0.852	0.853	17	0	3	0.039	0.032	0.040	0.074	-11
	Mean	0.874	0.858	0.852	0.851	16		Mean	0.041	0.038	0.041	0.050	-13
	1	0.869	0.884	0.859	0.878	4		1	0.038	0.032	0.039	0.037	-9
9	2	0.868	0.886	0.857	0.879	5	9	2	0.044	0.043	0.041	0.037	-13
9	3	0.876	0.880	0.866	0.873	4	9	3	0.039	0.030	0.039	0.061	-11
	Mean	0.871	0.883	0.861	0.877	4		Mean	0.040	0.035	0.040	0.045	-11
	1	0.862	0.865	0.871	0.856	-17		1	0.039	0.033	0.041	0.036	-7
10	2	0.877	0.880	0.875	0.874	-6	10	2	0.039	0.033	0.041	0.039	-9
10	3	0.876	0.873	0.887	0.865	-19	10	3	0.037	0.029	0.038	0.050	-9
	Mean	0.872	0.873	0.878	0.865	-14		Mean	0.038	0.032	0.040	0.042	-8
	1	0.868	0.863	0.857	0.853	2		1	0.039	0.029	0.039	0.035	-14
11	2	0.875	0.873	0.863	0.865	3	11	2	0.039	0.030	0.040	0.038	-13
11	3	0.873	0.875	0.862	0.867	2	11	3	0.039	0.029	0.038	0.054	-15
	Mean	0.872	0.870	0.861	0.861	2		Mean	0.039	0.029	0.039	0.043	-14
	1	0.863	0.844	0.872	0.836	-14		1	0.039	0.030	0.038	0.037	-14
12	2	0.866	0.844	0.864	0.842	-3	12	2	0.041	0.052	0.039	0.040	-15
12	3	0.867	0.851	0.878	0.845	-16	12	3	0.038	0.032	0.038	0.075	-13
	Mean	0.865	0.846	0.871	0.841	-11		Mean	0.039	0.038	0.038	0.051	-14
Mean for al	l assays	-	_	-	-	0	Mean for al	l assays	-	-	-	-	-12
SD for all	assays	-	-	-	-	9	SD for all	assays	-	-	-	-	3
CV for all	assays	-	_	-	-	-	CV for all	assays	-	-	-	_	-

*1 : decrease of A440 x10 3 = (A440(-) - A440(+) - (A-B)) ×1000 A440(-) : Absorbance before light exposure at 440 nm A440(+) : Absorbance after light exposure at 440 nm : Mean (Blank before light exposure) Α : Mean (Blank after exposure)

В

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$ A560(-) : Absorbance before light exposure at 560 nm

: Absorbance after light exposure at 560 nm A560(+) : Mean (Blank before light exposure) Α

В : Mean (Blank after exposure)

Appendix 3 Positive control and negative control data of Phase 1 study

Chemical Name : Qunine HCl

			Singlet oxy	ygen						Superoxide	anion		
A	Run# -	A440		A440((+)	D 1, *1	A	Run# -	A560	(-)	A560	(+)	D 1, *2
Assay	Kun# –	Γest Chemical	Blank	Test Chemical	Blank	Results*1	Assay	Kun# -	Test Chemical	Blank	Test Chemical	Blank	- Results*2
	1	0.996	1.003	0.597	0.992	390		1	0.034	0.038	0.380	0.042	335
1	2	0.993	1.002	0.609	0.994	375	1	2	0.032	0.036	0.374	0.059	331
1	3	0.990	1.005	0.606	0.995	375	1	3	0.037	0.034	0.376	0.040	328
	Mean	0.993	1.003	0.604	0.994	380		Mean	0.034	0.036	0.377	Blank 0.042 0.059 0.040 0.047 0.037 0.040 0.039 0.041 0.039 0.041 0.041 0.041 0.042 0.041 0.038 0.040 0.038 0.038 0.038	331
	1	1.000	1.005	0.573	1.004	421		1	0.032	0.033	0.341	0.037	304
3	2	0.995	1.005	0.582	0.998	407	2	2	0.034	0.035	0.339	0.040	300
3	3	0.993	1.009	0.584	0.998	403	2	3	0.033	0.034	0.357	0.039	319
	Mean	0.996	1.006	0.580	1.000	410		Mean	0.033	0.034	0.346	0.039	308
	1	0.994	1.007	0.570	0.999	412		1	0.033	0.032	0.437	0.039 0.039 0.041 0.039 0.042 0.041	396
2	2	1.001	1.013	0.586	0.997	403	3	2	0.032	0.032	0.413	0.039	373
2	3	1.001	1.009	0.589	0.998	400	3	3	0.032	0.034	0.384	0.042	344
	Mean	0.999	1.010	0.582	0.998	405		Mean	0.032	0.033	0.411	0.041	371
	1	0.985	1.001	0.559	0.996	417		1	0.033	0.033	0.412	0.041	371
4	2	1.000	1.003	0.581	0.993	410	4	2	0.033	0.033	0.404	0.041	363
4	3	0.994	1.004	0.575	0.992	410	4	3	0.033	0.033	0.389	0.042	348
	Mean	0.993	1.003	0.572	0.994	412		Mean	0.033	0.033	0.402	0.041	361
	1	0.996	1.000	0.558	0.991	428		1	0.032	0.032	0.358	0.038	319
5	2	0.990	0.995	0.572	0.988	408	5	2	0.032	0.033	0.352	0.040	313
3	3	0.992	1.011	0.575	0.996	407	3	3	0.032	0.033	0.365	0.042	326
	Mean	0.993	1.002	0.568	0.992	414		Mean	0.032	0.033	0.358	0.040	319
	1	1.001	1.004	0.570	1.000	424		1	0.032	0.033	0.345	0.038	307
6	2	0.991	1.000	0.584	0.994	400	6	2	0.032	0.032	0.344	0.038	306
U	3	0.992	1.008	0.586	0.998	399		3	0.032	0.032	0.352	0.038	314
	Mean	0.995	1.004	0.580	0.997	408		Mean	0.032	0.032	0.347	0.038	309

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 *2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α : Mean (Blank after exposure) : Mean (Blank after exposure) В В

Appendix 3 Positive control and negative control data of Phase 1 study

Chemical Name : Qunine HCl

Assay	Run# T	A440(·)									0.443 0.038 0.444 0.040 0.464 0.040 0.450 0.039 0.489 0.038 0.475 0.045 0.438 0.040 0.467 0.041 0.401 0.038 0.377 0.051 0.415 0.044 0.398 0.044 0.423 0.038 0.405 0.045 0.398 0.040 0.409 0.041 0.395 0.038 0.417 0.040 0.398 0.039 0.395 0.040 0.398 0.039 0.397 0.041			
Assay	Run# T	Run#		- ()		A440((+)	Results*1	A 2222	Run# -	A560	(-)	A560	(+)	D 1, *2
		est Chemical	Blank	Test Chemical	Blank	- Results	Assay	Kun# -	Test Chemical	Blank	Test Chemical	Blank	- Results ^{*2}		
	1	0.988	1.002	0.548	0.986	428		1	0.032	0.032	0.443	0.038	404		
7	2	0.990	1.002	0.570	0.993	408	7	2	0.032	0.032	0.444	0.040	405		
,	3	0.997	1.004	0.578	0.995	407	,	3	0.032	0.033	0.464	0.040	425		
•	Mean	0.992	1.003	0.565	0.991	414		Mean	0.032	0.032	0.450	Blank 0.038 0.040 0.040 0.039 0.038 0.045 0.040 0.041 0.038 0.051 0.044 0.038 0.045 0.040 0.041 0.038 0.045 0.040 0.041 0.038 0.045 0.040 0.041 0.038 0.045 0.040 0.041	411		
	1	0.994	1.000	0.554	0.991	432		1	0.032	0.032	0.489	0.038	449		
8	2	0.989	0.996	0.567	0.990	414	8	2	0.032	0.033	0.475	0.045	435		
0	3	0.991	1.003	0.570	0.995	413	8	3	0.032	0.034	0.438	0.040	398		
•	Mean	0.991	1.000	0.564	0.992	420		Mean	0.032	0.033	0.467	0.041	427		
	1	0.987	0.995	0.554	0.986	424		1	0.033	0.032	0.401	0.038	357		
9	2	0.983	0.994	0.575	0.986	399	9	2	0.033	0.034	0.377	0.051	333		
9	3	0.994	1.001	0.579	0.993	406	9	3	0.033	0.032	0.415	0.044	371		
	Mean	0.988	0.997	0.569	0.988	410		Mean	0.033	0.033	0.398	0.044	354		
	1	0.988	0.994	0.545	0.965	427		1	0.034	0.033	0.423	0.038	381		
11	2	0.988	0.997	0.561	0.987	411	10	2	0.032	0.032	0.405	0.045	365		
11	3	0.994	0.997	0.569	0.989	409	10	3	0.033	0.033	0.398	0.040	357		
	Mean	0.990	0.996	0.558	0.980	416		Mean	0.033	0.033	0.409	0.041	368		
	1	0.993	1.002	0.545	0.990	438		1	0.032	0.033	0.395	0.038	357		
10	2	0.995	1.004	0.561	0.992	424	11	2	0.036	0.033	0.382	0.038	340		
10	3	0.991	1.008	0.571	1.003	410	11	3	0.032	0.033	0.417	0.040	379		
•	Mean	0.993	1.005	0.559	0.995	424		Mean	0.033	0.033	0.398	0.039	359		
	1	0.996	1.009	0.540	0.999	439		1	0.033	0.035	0.395	0.040	356		
12	2	1.003	1.007	0.560	0.977	426	12	2	0.032	0.034	0.397	0.041	359		
12	3	1.000	1.010	0.566	1.000	417	12	3	0.032	0.033	0.416	0.039	378		
•	Mean	1.000	1.009	0.555	0.992	427		Mean	0.032	0.034	0.403	0.040	364		
Mean for all as		=	-	-	-	412	Mean for al	l assays	=	-	-	-	357		
SD for all ass	says	-	-	-	-	12	SD for all	assays	=	-	-	-	37		
CV for all ass	says	=	-	=	-	2.9	CV for all	assays	=	-	-	-	10.4		

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm

A440(+) : Absorbance after light exposure at 440 nm

A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$ *3 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$ *4 : Absorbance before light exposure at 560 nm

A560(+) : Absorbance after light exposure at 560 nm

A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Appendix 3 Positive control and negative control data of Phase 1 study

Chemical Name : Sulisobenzone

			Singlet oxy	/gen		-				Superoxide	anion		
A	D#	A440		A440((+)	Results*1	A	Run# -	A560	(-)	A560((+)	Results*2
Assay	Run# –	Test Chemical	Blank	Test Chemical	Blank	- Results	Assay	Kun#	Test Chemical	Blank	Test Chemical	Blank 0.042 0.059 0.040 0.047 0.037 0.040 0.039 0.041 0.039 0.041 0.041 0.041 0.041 0.042 0.041 0.038 0.040 0.038 0.038 0.038	- Results
	1	1.004	1.003	0.996	0.992	-1		1	0.038	0.038	0.039	0.042	-10
1	2	1.009	1.002	1.003	0.994	-3	1	2	0.037	0.036	0.038	0.059	-10
1	3	1.008	1.005	0.999	0.995	0	1	3	0.037	0.034	0.038	0.040	-10
	Mean	1.007	1.003	0.999	0.994	-1		Mean	0.037	0.036	0.038	0.047	-10
	1	1.006	1.005	0.997	1.004	3		1	0.038	0.033	0.039	0.037	-4
2	2	1.011	1.005	1.003	0.998	2	2	2	0.039	0.035	0.040	0.040	-4
2	3	1.013	1.009	1.001	0.998	6	2	3	0.039	0.034	0.041	0.039	-3
	Mean	1.010	1.006	1.000	1.000	4		Mean	0.039	0.034	0.040	0.039	-4
	1	1.007	1.007	0.999	0.999	-4		1	0.038	0.032	0.038	0.041	-8
3	2	1.012	1.013	0.999	0.997	1	3	2	0.037	0.032	0.039	0.039	-6
3	3	1.011	1.009	0.999	0.998	0	3	3	0.037	0.034	0.038	0.042	-7
	Mean	1.010	1.010	0.999	0.998	-1		Mean	0.037	0.033	0.038	0.041	-7
	1	1.002	1.001	0.997	0.996	-4		1	0.038	0.033	0.039	0.041	-7
4	2	0.990	1.003	0.978	0.993	3	4	2	0.037	0.033	0.039	0.041	-6
4	3	1.009	1.004	0.998	0.992	2	4	3	0.039	0.033	0.040	0.042	-7
	Mean	1.000	1.003	0.991	0.994	0		Mean	0.038	0.033	0.039	0.041	-7
	1	1.002	1.000	0.991	0.991	1		1	0.038	0.032	0.038	0.038	-7
5	2	1.002	0.995	0.993	0.988	-1	5	2	0.038	0.033	0.051	0.040	6
3	3	1.008	1.011	0.999	0.996	-1	3	3	0.042	0.033	0.045	0.042	-4
	Mean	1.004	1.002	0.994	0.992	0		Mean	0.039	0.033	0.045	0.040	-2
	1	1.004	1.004	1.002	1.000	-5		1	0.038	0.033	0.039	0.038	-5
6	2	1.005	1.000	0.997	0.994	1	6	2	0.037	0.032	0.039	0.038	-4
U	3	1.007	1.008	1.001	0.998	-1	U	3	0.037	0.032	0.038	0.038	-5
	Mean	1.005	1.004	1.000	0.997	-2		Mean	0.037	0.032	0.039	0.038	-5

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 *2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α : Mean (Blank after exposure) : Mean (Blank after exposure) В В

Appendix 3 Positive control and negative control data of Phase 1 study

: 2 Laboratory

Sulisobenzone Chemical Name

			Singlet oxy	gen		_				Superoxide	anion		
Assay	Run#	A440	(-)	A440((+)	Results*1	Assay	Run#	A560	(-)	A560	H) Blank 0.038 0.040 0.040 0.039 0.038 0.045 0.040 0.041 0.038 0.051 0.044 0.044 0.038 0.045 0.040 0.041 0.038 0.045 0.040 0.041 0.038 0.040 0.041 - -	Results*2
Assay	Kull#	Test Chemical	Blank	Test Chemical	Blank	- Results	Assay	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.998	1.002	0.989	0.986	-3		1	0.037	0.032	0.039	0.038	-5
7	2	1.005	1.002	0.995	0.993	-2	7	2	0.038	0.032	0.038	0.040	-7
/	3	1.007	1.004	0.999	0.995	-4	,	3	0.037	0.033	0.040	0.040	-4
	Mean	1.003	1.003	0.994	0.991	-3		Mean	0.037	0.032	0.039	0.039	-5
	1	1.000	1.000	0.987	0.991	5		1	0.037	0.032	0.037	0.038	-8
8	2	1.003	0.996	0.998	0.990	-3	8	2	0.037	0.033	0.038	0.045	-7
o	3	1.007	1.003	1.000	0.995	-1	8	3	0.039	0.034	0.039	0.040	-8
	Mean	1.003	1.000	0.995	0.992	0		Mean	0.038	0.033	0.038	0.041	-8
	1	0.995	0.995	0.990	0.986	-4		1	0.037	0.032	0.038	0.038	-10
9	2	1.001	0.994	0.992	0.986	0	9	2	0.037	0.034	0.038	0.051	-10
9	3	1.004	1.001	0.998	0.993	-3	9	3	0.037	0.032	0.039	0.044	-9
	Mean	1.000	0.997	0.993	0.988	-2		Mean	0.037	0.033	0.038	0.044	-10
	1	1.000	0.994	0.992	0.965	-8		1	0.037	0.033	0.039	0.038	-6
10	2	1.000	0.997	0.993	0.987	-9	10	2	0.037	0.032	0.038	0.045	-7
10	3	1.003	0.997	0.995	0.989	-8	10	3	0.038	0.033	0.038	0.040	-8
	Mean	1.001	0.996	0.993	0.980	-8		Mean	0.037	0.033	0.038	0.041	-7
	1	1.000	1.002	0.990	0.990	0		1	0.040	0.033	0.039	0.038	-7
11	2	1.007	1.004	0.999	0.992	-2	11	2	0.038	0.033	0.038	0.038	-6
11	3	1.007	1.008	1.004	1.003	-7	11	3	0.037	0.033	0.038	0.040	-5
	Mean	1.005	1.005	0.998	0.995	-3		Mean	0.038	0.033	0.038	0.039	-6
	1	1.008	1.009	0.998	0.999	-7		1	0.038	0.035	0.039	0.040	-5
12	2	1.008	1.007	0.990	0.977	1	12	2	0.038	0.034	0.039	0.041	-5
12	3	1.013	1.010	1.008	1.000	-12	12	3	0.038	0.033	0.040	0.039	-4
	Mean	1.010	1.009	0.999	0.992	-6		Mean	0.038	0.034	0.039	0.040	-5
Mean for a	ll assays	-	-	-	-	-2	Mean for al	l assays	-	-	-	-	-6
SD for all	assays	=	-	=	-	3	SD for all	assays	=	-	-	-	2
CV for all	assays	-	-	-	-	-	CV for all	assays	-	-		-	-

*1 : decrease of A440 $x10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm : Absorbance after light exposure at 440 nm A440(+) : Mean (Blank before light exposure) Α : Mean (Blank after exposure)

В

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$ A560(-) : Absorbance before light exposure at 560 nm

: Absorbance after light exposure at 560 nm A560(+) : Mean (Blank before light exposure) Α

Appendix 3 Positive control and negative control data of Phase 1 study

Chemical Name : Qunine HCl

			Singlet oxy	/gen						Superoxide	anion		
A	Run# —	A440		A440	(+)	Results*1	A	Run# -	A560	(-)	A560	(+)	- Results*2
Assay	Run# T	Test Chemical	Blank	Test Chemical	Blank	- Results	Assay	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results
	1	0.988	0.996	0.606	0.982	366		1	0.037	0.038	0.245	0.040	205
1	2	0.991	1.001	0.614	0.987	361	1	2	0.039	0.039	0.248	0.041	206
1	3	0.984	1.000	0.614	0.983	355	1	3	0.038	0.038	0.269	0.040	228
	Mean	0.987	0.999	0.612	0.984	361		Mean	0.038	0.038	0.254	Blank 0.040 0.041	213
	1	0.978	0.980	0.593	0.965	371		1	0.036	0.037	0.261	0.040	223
2	2	0.975	0.989	0.602	0.977	359	2	2	0.038	0.039	0.254	0.041	213
2	3	0.974	0.988	0.598	0.974	363	2	3	0.038	0.037	0.287	0.040	247
	Mean	0.976	0.986	0.598	0.972	364		Mean	0.038	0.038	0.267	0.040	228
	1	0.967	0.982	0.598	0.967	357		1	0.037	0.038	0.236	0.040	197
3	2	0.966	0.980	0.606	0.967	347	3	2	0.039	0.039	0.229	0.041	188
3	3	0.962	0.976	0.608	0.964	342	3	3	0.038	0.038	0.254	0.040	213
	Mean	0.965	0.979	0.604	0.966	349		Mean	0.038	0.038	0.240	0.040	199
	1	0.984	0.990	0.605	0.979	368		1	0.037	0.039	0.268	0.041	228
4	2	0.986	0.997	0.618	0.985	357	4	2	0.039	0.039	0.262	0.041	220
4	3	0.982	0.995	0.607	0.985	364	4	3	0.039	0.038	0.280	0.040	238
	Mean	0.984	0.994	0.610	0.983	363		Mean	0.038	0.038	0.270	0.041	229
	1	0.979	0.988	0.610	0.975	356		1	0.037	0.038	0.258	0.041	218
5	2	0.980	0.993	0.621	0.981	346	5	2	0.039	0.039	0.259	0.042	218
3	3	0.974	0.992	0.609	0.979	352	3	3	0.038	0.038	0.270	0.040	229
	Mean	0.978	0.991	0.613	0.978	351		Mean	0.038	0.038	0.262	0.041	222
	1	0.968	0.987	0.590	0.976	368		1	0.037	0.038	0.248	0.040	209
6	2	0.966	0.981	0.594	0.971	362	6	2	0.039	0.039	0.250	0.041	209
U	3	0.960	0.978	0.594	0.968	356	6	3	0.039	0.038	0.267	0.040	226
	Mean	0.964	0.982	0.593	0.972	362		Mean	0.038	0.038	0.255	0.040	215

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$ *1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$: Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+): Mean (Blank before light exposure) : Mean (Blank before light exposure) Α A : Mean (Blank after exposure) : Mean (Blank after exposure) В В

Appendix 3 Positive control and negative control data of Phase 1 study

Chemical Name : Qunine HCl

			Singlet oxy	ygen						Superoxide	anion		
Aggari	Run# -	A440	(-)	A440((+)	Results*1	Aggari	Run# -	A560	(-)	A5600	(+)	Results*2
Assay	Kuli# –	Test Chemical	Blank	Test Chemical	Blank	Results	Assay	Kuli# -	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.969	0.984	0.593	0.972	365		1	0.037	0.038	0.233	0.041	194
7	2	0.966	0.984	0.602	0.974	353	7	2	0.039	0.040	0.262	0.041	221
,	3	0.963	0.982	0.600	0.970	351	,	3	0.038	0.038	0.280	0.040	240
	Mean	0.966	0.984	0.598	0.972	356		Mean	0.038	0.039	0.258	Blank 0.041 0.041	218
	1	0.957	0.994	0.584	0.985	364		1	0.037	0.038	0.239	0.040	200
8	2	0.954	0.978	0.593	0.969	352	8	2	0.039	0.039	0.235	0.041	194
0	3	0.949	0.965	0.596	0.957	344	0	3	0.039	0.038	0.247	0.040	207
	Mean	0.954	0.979	0.591	0.970	353		Mean	0.038	0.038	0.240	0.040	200
	1	0.970	0.982	0.589	0.970	371		1	0.037	0.038	0.274	0.041	235
9	2	0.971	0.987	0.595	0.980	366	9	2	0.038	0.039	0.271	0.041	230
9	3	0.968	0.994	0.596	0.984	362	9	3	0.042	0.037	0.278	0.040	233
	Mean	0.970	0.988	0.593	0.978	366		Mean	0.039	0.038	0.275	0.041	233
	1	0.962	0.987	0.594	0.978	359		1	0.037	0.038	0.255	0.040	216
10	2	0.965	0.976	0.598	0.965	357	10	2	0.038	0.039	0.247	0.041	207
10	3	0.953	0.974	0.590	0.966	354	10	3	0.038	0.039	0.260	0.041	221
	Mean	0.960	0.979	0.594	0.970	357		Mean	0.038	0.039	0.254	0.041	215
	1	0.962	0.986	0.583	0.978	372		1	0.037	0.038	0.255	0.040	216
11	2	0.964	0.976	0.593	0.968	364	11	2	0.038	0.039	0.253	0.041	213
11	3	0.950	0.973	0.588	0.967	355	11	3	0.038	0.039	0.258	0.041	218
	Mean	0.958	0.978	0.588	0.971	364		Mean	0.038	0.039	0.255	0.041	216
	1	0.981	1.000	0.604	0.991	367		1	0.037	0.038	0.246	0.041	206
12	2	0.969	0.976	0.597	0.965	362	12	2	0.038	0.040	0.246	0.041	206
12	3	0.954	0.969	0.592	0.959	352	12	3	0.038	0.039	0.252	0.041	212
	Mean	0.968	0.982	0.597	0.972	360		Mean	0.038	0.039	0.248	0.041	208
Mean for al	ll assays	-	-	-	-	359	Mean for al	ll assays	-	-	-	-	216
SD for all	assays	-	-	=	-	6	SD for all	assays	-	-		-	11
CV for all	assays	-	-	-	-	1.7	CV for all	assays		-	-	-	5.1

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

*3 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

*4 : Absorbance before light exposure at 560 nm

*5 : Mean (Blank before light exposure)

*6 : Mean (Blank after exposure)

*8 : Mean (Blan

Appendix 3 Positive control and negative control data of Phase 1 study

Laboratory : 3

Chemical Name : Sulisobenzone

			Singlet oxy	/gen						Superoxide	anion		
Assay	Run# —	A440	(-)	A440	(+)	Results*1	Assay	Run# -	A560	(-)	A560	(+)	Results*2
Assay		Test Chemical	Blank	Test Chemical	Blank	- Results	Assay	Kuli# -	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.996	0.996	0.989	0.982	-8		1	0.039	0.038	0.040	0.040	-3
1	2	0.997	1.001	0.992	0.987	-9	1	2	0.040	0.039	0.041	0.041	-2
1	3	1.001	1.000	0.993	0.983	-7	1	3	0.039	0.038	0.040	0.040	-2
	Mean	0.998	0.999	0.991	0.984	-8		Mean	0.039	0.038	0.040	Blank 0.040 0.041 0.040 0.041 0.040 0.041 0.040 0.040 0.040 0.040 0.041 0.040 0.041 0.041 0.041 0.041 0.042 0.040 0.041 0.040 0.041 0.040 0.041 0.040	-2
	1	0.983	0.980	0.978	0.965	-8		1	0.039	0.038	0.039	0.040	-2
2	2	0.990	0.989	0.981	0.977	-6	2	2	0.040	0.039	0.040	0.041	-2
2	3	0.989	0.988	0.982	0.974	-7	2	3	0.039	0.037	0.039	0.040	-2
	Mean	0.987	0.986	0.980	0.972	-7		Mean	0.039	0.038	0.039	0.040	-2
	1	0.987	0.982	0.981	0.967	-7		1	0.040	0.038	0.040	0.040	-2
3	2	0.979	0.980	0.975	0.967	-9	3	2	0.041	0.039	0.041	0.041	-2
3	3	0.979	0.976	0.974	0.964	-8	3	3	0.039	0.038	0.040	0.040	-1
	Mean	0.982	0.979	0.976	0.966	-8		Mean	0.040	0.038	0.040	0.040	-2
	1	0.994	0.990	0.989	0.979	-6		1	0.039	0.039	0.039	0.041	-3
4	2	0.993	0.997	0.989	0.985	-7	4	2	0.040	0.039	0.040	0.041	-3
4	3	0.997	0.995	0.993	0.985	-6	4	3	0.039	0.038	0.040	0.040	-2
	Mean	0.995	0.994	0.990	0.983	-6		Mean	0.039	0.038	0.040	0.041	-3
	1	0.988	0.988	0.983	0.975	-7		1	0.039	0.038	0.039	0.041	-3
5	2	0.989	0.993	0.980	0.981	-4	5	2	0.043	0.039	0.042	0.042	-3
3	3	0.992	0.992	0.982	0.979	-3	3	3	0.039	0.038	0.039	0.040	-3
	Mean	0.990	0.991	0.982	0.978	-5		Mean	0.040	0.038	0.040	0.041	-3
	1	0.989	0.987	0.982	0.976	-2		1	0.039	0.038	0.039	0.040	-2
6	2	0.982	0.981	0.973	0.971	-1	6	2	0.040	0.039	0.040	0.041	-2
U	3	0.978	0.978	0.970	0.968	-2	U	3	0.039	0.038	0.039	0.040	-2
	Mean	0.983	0.982	0.975	0.972	-2		Mean	0.039	0.038	0.039	0.040	-2

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 *2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α : Mean (Blank after exposure) : Mean (Blank after exposure) В В

Appendix 3 Positive control and negative control data of Phase 1 study

: 3 Laboratory

Sulisobenzone Chemical Name

			Singlet oxy	/gen						Superoxide	anion		
A ccorr	Run# -	A440	(-)	A440((+)	Results*1	Aggari	Run#	A560	(-)	A5600	(+)	Results*2
Assay	Kull# _	Γest Chemical	Blank	Test Chemical	Blank	Results	Assay	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.993	0.984	0.985	0.972	-4		1	0.039	0.038	0.040	0.041	-1
7	2	0.984	0.984	0.975	0.974	-4	7	2	0.041	0.040	0.041	0.041	-1
/	3	0.982	0.982	0.976	0.970	-5	,	3	0.039	0.038	0.041	0.040	-1
	Mean	0.986	0.984	0.979	0.972	-4		Mean	0.040	0.039	0.041	0.041	-1
	1	0.995	0.994	0.988	0.985	-2		1	0.039	0.038	0.039	0.040	-2
8	2	0.975	0.978	0.968	0.969	-2	8	2	0.040	0.039	0.040	0.041	-2
0	3	0.969	0.965	0.961	0.957	-1	0	3	0.039	0.038	0.040	0.040	-2
	Mean	0.980	0.979	0.972	0.970	-2		Mean	0.039	0.038	0.040	0.040	-2
	1	0.984	0.982	0.976	0.970	-2		1	0.039	0.038	0.039	0.041	-3
9	2	0.986	0.987	0.977	0.980	-1	9	2	0.040	0.039	0.040	0.041	-2
7	3	0.987	0.994	0.979	0.984	-2	9	3	0.038	0.037	0.039	0.040	-2
	Mean	0.985	0.988	0.977	0.978	-2		Mean	0.039	0.038	0.040	0.041	-2
	1	0.980	0.987	0.974	0.978	-2		1	0.040	0.038	0.040	0.040	-2
10	2	0.982	0.976	0.975	0.965	-2	10	2	0.039	0.039	0.039	0.041	-2
10	3	0.976	0.974	0.969	0.966	-2	10	3	0.039	0.039	0.039	0.041	-1
	Mean	0.980	0.979	0.973	0.970	-2		Mean	0.039	0.039	0.039	0.041	-2
	1	0.981	0.986	0.973	0.978	1		1	0.039	0.038	0.040	0.040	-2
11	2	0.981	0.976	0.974	0.968	1	11	2	0.039	0.039	0.039	0.041	-2
11	3	0.976	0.973	0.970	0.967	-1	11	3	0.039	0.039	0.040	0.041	-1
	Mean	0.979	0.978	0.972	0.971	0		Mean	0.039	0.039	0.040	0.041	-2
	1	0.993	1.000	0.987	0.991	-4		1	0.039	0.038	0.040	0.041	-2
12	2	0.980	0.976	0.973	0.965	-3	12	2	0.039	0.040	0.039	0.041	-2
12	3	0.973	0.969	0.966	0.959	-3	12	3	0.042	0.039	0.039	0.041	-4
	Mean	0.982	0.982	0.975	0.972	-3		Mean	0.040	0.039	0.039	0.041	-3
Mean for all		-	-	=	-	-4	Mean for al	l assays	=	-	=	-	-2
SD for all a	ıssays	-	-	=	-	3	SD for all	assays	=	-	-	-	1
CV for all a	issays	-	-	-	-	-	CV for all	assays	-	-	-	-	-

*1 : decrease of A440 x10 3 = (A440(-) - A440(+) - (A-B)) ×1000 A440(-) : Absorbance before light exposure at 440 nm A440(+) : Absorbance after light exposure at 440 nm : Mean (Blank before light exposure) Α : Mean (Blank after exposure)

В

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$ A560(-) : Absorbance before light exposure at 560 nm : Absorbance after light exposure at 560 nm A560(+) : Mean (Blank before light exposure) Α В : Mean (Blank after exposure)

Laboratory Chemical Name

Test concentration 20 µM

			Singlet oxy	gen						Superoxide a	nnion			Positive
Dane	D.,,,,,#	A440	(-)	A440((+)	p. 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Run	Run# -	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.888	0.871	0.879	0.864	3		1	0.045	0.033	0.042	0.058	-24	
1	2	0.887	0.870	0.878	0.864	2	1	2	0.031	0.035	0.040	0.041	-11	
1	3	0.852	0.875	0.844	0.867	1	1	3	0.039	0.030	0.040	0.058	-19	
	Mean	0.876	0.872	0.867	0.865	2		Mean	0.038	0.033	0.041	0.053	-18	Negative
	1	0.874	0.859	0.866	0.850	-1		1	0.045	0.030	0.044	0.038	-12	
2	2	0.873	0.876	0.865	0.868	0	2	2	0.033	0.058	0.039	0.056	-5	
2	3	0.872	0.871	0.864	0.863	-1	2	3	0.051	0.031	0.039	0.057	-23	
	Mean	0.873	0.869	0.865	0.860	-1		Mean	0.043	0.039	0.041	0.050	-13	Negative
	1	0.868	0.868	0.859	0.861	1		1	0.048	0.029	0.044	0.036	-13	
2	2	0.869	0.865	0.863	0.858	-3	2	2	0.032	0.045	0.046	0.042	5	
3	3	0.869	0.865	0.861	0.857	0	3	3	0.052	0.031	0.042	0.055	-20	
	Mean	0.869	0.866	0.861	0.858	-1		Mean	0.044	0.035	0.044	0.044	-9	Negative
Mean for 3	3 assays	-	-	-	-	0	Mean for 3	3 assays	-	-	-	-	-13	Negative

est concentrati	ion	200 μΜ	~							~				
			Singlet oxy	gen						Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560((+)	- Results*2	/
Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results	Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results	Negative
	1	0.879	0.873	0.872	0.867	1		1	0.035	0.032	0.046	0.036	2	
1	2	0.889	0.880	0.882	0.873	0	1	2	0.030	0.047	0.038	0.040	0	
1	3	0.887	0.882	0.881	0.875	0	1	3	0.059	0.030	0.042	0.061	-26	
	Mean	0.885	0.878	0.878	0.872	0		Mean	0.041	0.036	0.042	0.045	-8	Negative
	1	0.882	0.880	0.875	0.869	-2		1	0.041	0.033	0.048	0.036	-6	
2	2	0.888	0.889	0.881	0.882	-2	2	2	0.031	0.052	0.040	0.050	-3	
2	3	0.893	0.879	0.885	0.871	-1	2	3	0.049	0.033	0.045	0.066	-17	
	Mean	0.888	0.883	0.880	0.874	-2		Mean	0.040	0.039	0.044	0.051	-9	Negative
	1	0.881	0.886	0.873	0.877	0		1	0.039	0.033	0.040	0.039	-10	
2	2	0.890	0.891	0.881	0.885	2	2	2	0.032	0.048	0.039	0.044	-3	
3	3	0.890	0.892	0.883	0.884	0	3	3	0.041	0.032	0.044	0.057	-7	
	Mean	0.887	0.890	0.879	0.882	1		Mean	0.037	0.037	0.041	0.047	-7	Negative
Mean for 3	assays	-	-	-	-	0	Mean for 3	3 assays	-	-	-	-	-8	Negative

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

: Absorbance before light exposure at 440 nm

A440(+): Absorbance after light exposure at 440 nm : Mean (Blank before light exposure) : Mean (Blank after exposure)

A440(-)

A

В

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative: Singlet oxygen results <25 and Superoxide anion results <25 *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 *3: Final decision

: Absorbance before light exposure at 560 nm A560(-) A560(+) : Absorbance after light exposure at 560 nm Α : Mean (Blank before light exposure) В : Mean (Blank after exposure)

The optical absorbance values were rounded to the third decimal place. If the calculated "results" are different from the numerical results in the raw data sheets by the number of significant digits in the data sheet and the appendices are different, the data in the raw data sheet is used in the appendices.

Laboratory Chemical Name 8-MOP

Test concentration 20 µM

			Singlet oxy	gen	•	<u> </u>	•	Superoxide anion						
Run	Dun#	A440	(-)	A440((+)	D14-*1	Run	Run#	A560	(-)	A560((+)	D14-*2	/
Kuii	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.903	0.871	0.887	0.864	8		1	0.065	0.033	0.048	0.058	-37	
1	2	0.882	0.870	0.863	0.864	12	1	2	0.051	0.035	0.057	0.041	-14	
1	3	0.898	0.875	0.885	0.867	6	1	3	0.077	0.030	0.047	0.058	-50	
	Mean	0.894	0.872	0.878	0.865	9		Mean	0.064	0.033	0.051	0.053	-34	Negative
	1	0.879	0.859	0.866	0.850	4		1	0.070	0.030	0.047	0.038	-34	
2	2	0.870	0.876	0.852	0.868	9	2	2	0.057	0.058	0.047	0.056	-21	
2	3	0.881	0.871	0.865	0.863	7	2	3	0.077	0.031	0.048	0.057	-40	
	Mean	0.877	0.869	0.861	0.860	7		Mean	0.068	0.039	0.047	0.050	-32	Negative
	1	0.878	0.868	0.862	0.861	8		1	0.080	0.029	0.048	0.036	-41	
2	2	0.882	0.865	0.861	0.858	13	2	2	0.050	0.045	0.044	0.042	-15	
3	3	0.885	0.865	0.870	0.857	7	3	3	0.091	0.031	0.046	0.055	-54	
	Mean	0.882	0.866	0.864	0.858	9		Mean	0.074	0.035	0.046	0.044	-37	Negative
Mean for 3	assays	-	-	-	-	8	Mean for 3	assays	-	-	-	-	-34	Negative

			Singlet oxyg	gen						Superoxide a	nnion			Positive
Run	Run#	A440	(-)	A440((+)	D 1, *1	Run	Run#	A560	(-)	A560(+)	D 1, *2	/
Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.887	0.873	0.758	0.867	124		1	0.073	0.032	0.075	0.036	-7	
1	2	0.875	0.880	0.758	0.873	111	1	2	0.056	0.047	0.072	0.040	8	
1	3	0.894	0.882	0.760	0.875	128	1	3	0.073	0.030	0.074	0.061	-7	
	Mean	0.885	0.878	0.759	0.872	121		Mean	0.067	0.036	0.074	0.045	-2	Positive
	1	0.884	0.880	0.745	0.869	130		1	0.068	0.033	0.072	0.036	-8	
2	2	0.879	0.889	0.755	0.882	115	2	2	0.045	0.052	0.071	0.050	15	
2	3	0.891	0.879	0.759	0.871	123	2	3	0.054	0.033	0.072	0.066	7	
	Mean	0.885	0.883	0.753	0.874	123		Mean	0.056	0.039	0.072	0.051	5	Positive
	1	0.889	0.886	0.755	0.877	126		1	0.074	0.033	0.073	0.039	-11	
2	2	0.880	0.891	0.758	0.885	114	2	2	0.043	0.048	0.070	0.044	17	
3	3	0.895	0.892	0.760	0.884	127	3	3	0.056	0.032	0.073	0.057	7	
	Mean	0.888	0.890	0.758	0.882	122		Mean	0.058	0.037	0.072	0.047	4	Positive
Mean for 3	3 assays	-	-	-	-	122	Mean for 3	3 assays	-	-	-	-	2	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

A440(-) : Absorbance before light exposure at 440 nm A440(+): Absorbance after light exposure at 440 nm Α : Mean (Blank before light exposure) В

: Mean (Blank after exposure)

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

: Absorbance before light exposure at 560 nm A560(-) A560(+): Absorbance after light exposure at 560 nm Α : Mean (Blank before light exposure)

В : Mean (Blank after exposure) *3: Final decision

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative: Singlet oxygen results <25 and Superoxide anion results <25

Laboratory Chemical Name Amiodarone

Test concentration 20 µM	
--------------------------	--

			Singlet oxy	gen						Superoxide a	nnion			Positive
D.,,,,	D#	A440	(-)	A440((+)	n 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Run	Run# -	Test Chemical	Blank	Test Chemical	Blank	Results 1	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.946	0.871	0.801	0.864	138		1	0.096	0.033	0.089	0.058	-27	
1	2	0.941	0.870	0.802	0.864	132	1	2	0.093	0.035	0.087	0.041	-27	
1	3	0.955	0.875	0.813	0.867	135	1	3	0.095	0.030	0.088	0.058	-27	
	Mean	0.947	0.872	0.805	0.865	135		Mean	0.095	0.033	0.088	0.053	-27	Positive
	1	0.951	0.859	0.812	0.850	131		1	0.088	0.030	0.084	0.038	-15	
2	2	0.934	0.876	0.802	0.868	123	2	2	0.086	0.058	0.083	0.056	-14	
2	3	0.946	0.871	0.804	0.863	133	2	3	0.097	0.031	0.084	0.057	-24	
	Mean	0.944	0.869	0.806	0.860	129		Mean	0.090	0.039	0.084	0.050	-18	Positive
	1	0.941	0.868	0.812	0.861	122		1	0.091	0.029	0.083	0.036	-17	
2	2	0.935	0.865	0.804	0.858	124	2	2	0.089	0.045	0.083	0.042	-15	
3	3	0.943	0.865	0.804	0.857	131	3	3	0.092	0.031	0.084	0.055	-17	
	Mean	0.940	0.866	0.807	0.858	126		Mean	0.091	0.035	0.083	0.044	-16	Positive
Mean for 3	3 assays	-	-	-	-	130	Mean for 3	3 assays	-	-	-	-	-20	Positive

Test concentrat	ion	200 μΜ												
			Singlet oxyg	gen						Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	1.579	0.873	1.296	0.867	278		1	0.733	0.032	0.502	0.036	-240	
1	2	1.566	0.880	1.303	0.873	256	1	2	0.733	0.047	0.526	0.040	-216	
1	3	1.582	0.882	1.332	0.875	243	1	3	0.732	0.030	0.506	0.061	-234	
	Mean	1.576	0.878	1.310	0.872	259		Mean	0.733	0.036	0.511	0.045	-230	Positive
	1	1.515	0.880	1.295	0.869	211		1	0.681	0.033	0.491	0.036	-203	
2	2	1.496	0.889	1.304	0.882	183	2	2	0.684	0.052	0.505	0.050	-191	
2	3	1.495	0.879	1.304	0.871	182	2	3	0.687	0.033	0.505	0.066	-194	
	Mean	1.502	0.883	1.301	0.874	192		Mean	0.684	0.039	0.500	0.051	-196	Positive
	1	1.553	0.886	1.285	0.877	260		1	0.721	0.033	0.492	0.039	-239	
2	2	1.535	0.891	1.294	0.885	234	2	2	0.717	0.048	0.503	0.044	-224	
3	3	1.555	0.892	1.298	0.884	248	3	3	0.719	0.032	0.496	0.057	-233	
	Mean	1.548	0.890	1.292	0.882	247		Mean	0.719	0.037	0.497	0.047	-232	Positive
Mean for 3	3 assays	-	-	-	-	233	Mean for 3	3 assays	-	-	-	-	-219	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

: Absorbance before light exposure at 440 nm A440(-) A440(+): Absorbance after light exposure at 440 nm Α : Mean (Blank before light exposure)

В : Mean (Blank after exposure) *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

: Absorbance before light exposure at 560 nm A560(-) A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure)

Α В : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative: Singlet oxygen results <25 and Superoxide anion results <25

Laboratory : 1
Chemical Name : Chlorpromazine

Test concentration	20 μM
--------------------	-------

			Singlet oxy	gen					•	Superoxide a	nnion		•	Positive
Run	Pun#	A440	(-)	A440((+)	D14-*1	Run	Run#	A560	(-)	A560((+)	D16-*2	/
Kuii	Run#	Test Chemical	Blank	Test Chemical	Blank	Results 1	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.893	0.871	0.785	0.864	101		1	0.067	0.033	0.057	0.058	-30	
1	2	0.870	0.870	0.787	0.864	75	1	2	0.037	0.035	0.056	0.041	-1	
1	3	0.902	0.875	0.789	0.867	106	1	3	0.068	0.030	0.056	0.058	-32	
	Mean	0.888	0.872	0.787	0.865	94		Mean	0.057	0.033	0.056	0.053	-21	Positive
	1	0.884	0.859	0.777	0.850	98		1	0.062	0.030	0.059	0.038	-14	•
2	2	0.848	0.876	0.766	0.868	73	2	2	0.052	0.058	0.056	0.056	-7	
2	3	0.901	0.871	0.796	0.863	96	2	3	0.066	0.031	0.055	0.057	-22	
	Mean	0.878	0.869	0.780	0.860	89		Mean	0.060	0.039	0.057	0.050	-14	Positive
	1	0.896	0.868	0.786	0.861	102		1	0.076	0.029	0.056	0.036	-30	
2	2	0.860	0.865	0.788	0.858	65	2	2	0.040	0.045	0.057	0.042	9	
3	3	0.897	0.865	0.789	0.857	100	3	3	0.067	0.031	0.056	0.055	-20	
	Mean	0.884	0.866	0.788	0.858	89		Mean	0.061	0.035	0.056	0.044	-14	Positive
Mean for 3	3 assays	-	-	_	-	91	Mean for 3	3 assays	-	_	-	-	-16	Positive

			Singlet oxyg	gen						Superoxide a	nion			Positive
Run	D.,,,,,#	A440	(-)	A440((+)	D 1, *1	Run	Run#	A560	(-)	A560(+)	D 1, *2	/
Kun	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.867	0.873	0.862	0.867	-1		1	0.047	0.032	0.133	0.036	76	
1	2	0.861	0.880	0.865	0.873	-10	1	2	0.038	0.047	0.134	0.040	87	
1	3	0.877	0.882	0.870	0.875	1	1	3	0.050	0.030	0.135	0.061	76	
	Mean	0.868	0.878	0.866	0.872	-3		Mean	0.045	0.036	0.134	0.045	80	Positive
	1	0.846	0.880	0.852	0.869	-16		1	0.043	0.033	0.130	0.036	75	
2	2	0.860	0.889	0.867	0.882	-16	2	2	0.038	0.052	0.133	0.050	82	
2	3	0.870	0.879	0.865	0.871	-4	2	3	0.045	0.033	0.133	0.066	76	
	Mean	0.859	0.883	0.861	0.874	-12		Mean	0.042	0.039	0.132	0.051	78	Positive
	1	0.862	0.886	0.856	0.877	-2		1	0.045	0.033	0.130	0.039	75	
2	2	0.861	0.891	0.871	0.885	-18	2	2	0.037	0.048	0.132	0.044	85	
3	3	0.882	0.892	0.873	0.884	0	3	3	0.047	0.032	0.132	0.057	75	
	Mean	0.868	0.890	0.867	0.882	-7		Mean	0.043	0.037	0.131	0.047	78	Positive
Mean for 3	assavs	-	-	_	-	-7	Mean for 3	assavs	-	-	_	-	79	Positive

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm

A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25 *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Laboratory : 1 Chemical Name : Diclofenac

Test concentration	20 μM
--------------------	-------

			Singlet oxyg	gen						Superoxide a	nnion			Positive
Run	D#	A440	(-)	A440((+)	n u *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Run# -	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	- Results 2	Negative
	1	0.873	0.871	0.704	0.864	162		1	0.043	0.033	0.072	0.058	9	
1	2	0.871	0.870	0.700	0.864	164	1	2	0.046	0.035	0.069	0.041	3	
1	3	0.874	0.875	0.704	0.867	162	1	3	0.040	0.030	0.072	0.058	12	
	Mean	0.873	0.872	0.703	0.865	163		Mean	0.043	0.033	0.071	0.053	8	Positive
	1	0.880	0.859	0.710	0.850	161		1	0.039	0.030	0.068	0.038	18	
2	2	0.880	0.876	0.712	0.868	159	2	2	0.052	0.058	0.072	0.056	9	
2	3	0.885	0.871	0.715	0.863	161	2	3	0.045	0.031	0.070	0.057	14	
	Mean	0.882	0.869	0.712	0.860	160		Mean	0.045	0.039	0.070	0.050	14	Positive
	1	0.859	0.868	0.690	0.861	162		1	0.044	0.029	0.069	0.036	16	
2	2	0.873	0.865	0.703	0.858	162	2	2	0.046	0.045	0.067	0.042	11	
3	3	0.873	0.865	0.705	0.857	160	3	3	0.043	0.031	0.068	0.055	16	
	Mean	0.868	0.866	0.699	0.858	161		Mean	0.044	0.035	0.068	0.044	14	Positive
Mean for 3	3 assays	-	-	-	-	161	Mean for 3	3 assays	-	-	-	-	12	Positive

Test concentrat	tion	$200~\mu M$												
			Singlet oxyg	gen						Superoxide a	nnion			Positive
D	D#	A440	(-)	A440((+)	p. 1, *1	Run	Run#	A560	(-)	A560(+)	D 1, *2	/
Run	Run#	Test Chemical	Blank	Test Chemical	Blank	Results"	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.866	0.873	0.548	0.867	312		1	0.050	0.032	0.410	0.036	351	
1	2	0.887	0.880	0.570	0.873	311	1	2	0.045	0.047	0.427	0.040	372	
1	3	0.886	0.882	0.567	0.875	313	1	3	0.050	0.030	0.428	0.061	369	
	Mean	0.880	0.878	0.562	0.872	312		Mean	0.048	0.036	0.422	0.045	364	Positive
	1	0.880	0.880	0.551	0.869	319		1	0.047	0.033	0.411	0.036	352	
2	2	0.890	0.889	0.565	0.882	316	2	2	0.043	0.052	0.431	0.050	376	
2	3	0.888	0.879	0.562	0.871	318	2	3	0.050	0.033	0.421	0.066	359	
	Mean	0.886	0.883	0.559	0.874	318		Mean	0.047	0.039	0.421	0.051	362	Positive
	1	0.899	0.886	0.566	0.877	325		1	0.048	0.033	0.411	0.039	353	
2	2	0.894	0.891	0.566	0.885	321	2	2	0.048	0.048	0.430	0.044	372	
3	3	0.886	0.892	0.559	0.884	318	3	3	0.050	0.032	0.431	0.057	371	
	Mean	0.893	0.890	0.564	0.882	321		Mean	0.049	0.037	0.424	0.047	365	Positive
Mean for 3	3 assays	-	-	-	-	317	Mean for 3	3 assays	-	-	-	-	364	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)

Negative: Singlet oxygen results <25 and Superoxide anion results <25

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

A560(+) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Laboratory : 1
Chemical Name : Doxycycline

Test concentration	20	μM
--------------------	----	----

			Singlet oxy	gen						Superoxide a	nnion			Positive
Run	Run# -	A440	(-)	A440((+)	p. 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Kun# -	Test Chemical	Blank	Test Chemical	Blank	Results 1	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.869	0.871	0.770	0.864	92		1	0.056	0.033	0.102	0.058	26	
1	2	0.876	0.870	0.791	0.864	78	1	2	0.071	0.035	0.105	0.041	14	
1	3	0.881	0.875	0.788	0.867	86	1	3	0.060	0.030	0.100	0.058	20	
	Mean	0.875	0.872	0.783	0.865	85		Mean	0.062	0.033	0.102	0.053	20	Positive
	1	0.874	0.859	0.790	0.850	75		1	0.053	0.030	0.092	0.038	28	
2	2	0.840	0.876	0.776	0.868	55	2	2	0.051	0.058	0.095	0.056	32	
2	3	0.863	0.871	0.783	0.863	72	2	3	0.055	0.031	0.092	0.057	26	
	Mean	0.859	0.869	0.783	0.860	67		Mean	0.053	0.039	0.093	0.050	29	Positive
	1	0.876	0.868	0.757	0.861	110		1	0.054	0.029	0.094	0.036	30	
2	2	0.837	0.865	0.757	0.858	72	2	2	0.054	0.045	0.097	0.042	33	
3	3	0.882	0.865	0.775	0.857	100	3	3	0.057	0.031	0.095	0.055	29	
	Mean	0.865	0.866	0.763	0.858	94		Mean	0.055	0.035	0.095	0.044	31	Positive
Mean for 3	3 assays	-	-	-	-	82	Mean for 3	3 assays	-	-	-	-	27	Positive

		•	Singlet oxyg	gen		_				Superoxide a	nnion			Positive
Run	Run#	A440	(-)	A440((+)	D 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.801	0.873	0.670	0.867	125		1	0.048	0.032	0.373	0.036	316	
1	2	0.810	0.880	0.699	0.873	105	1	2	0.055	0.047	0.384	0.040	319	
1	3	0.814	0.882	0.700	0.875	108	1	3	0.050	0.030	0.388	0.061	329	
	Mean	0.808	0.878	0.690	0.872	113		Mean	0.051	0.036	0.382	0.045	321	Positive
	1	0.810	0.880	0.674	0.869	127		1	0.047	0.033	0.371	0.036	312	
2	2	0.813	0.889	0.703	0.882	100	2	2	0.052	0.052	0.387	0.050	323	
2	3	0.826	0.879	0.712	0.871	106	2	3	0.048	0.033	0.388	0.066	328	
	Mean	0.816	0.883	0.696	0.874	111		Mean	0.049	0.039	0.382	0.051	321	Positive
	1	0.811	0.886	0.672	0.877	131		1	0.049	0.033	0.373	0.039	315	
2	2	0.814	0.891	0.698	0.885	107	2	2	0.047	0.048	0.384	0.044	327	
3	3	0.834	0.892	0.713	0.884	113	3	3	0.052	0.032	0.389	0.057	327	
	Mean	0.820	0.890	0.694	0.882	117		Mean	0.049	0.037	0.382	0.047	323	Positive
Mean for 3	assays	-	-	-	-	114	Mean for 3	assays	-	-	-	-	322	Positive

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

A : Mean (Blank after exposure)

B : Mean (Blank after exposure)

Laboratory : 1 Chemical Name : Furosemide

Test concentration	20 μM
--------------------	-------

		•	Singlet oxy	gen						Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	D14-*1	Run	Run#	A560	(-)	A560((+)	D14-*2	/
Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results"	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.878	0.871	0.843	0.864	28		1	0.048	0.033	0.067	0.058	-1	
1	2	0.878	0.870	0.823	0.864	48	1	2	0.093	0.035	0.076	0.041	-38	
1	3	0.884	0.875	0.849	0.867	28	1	3	0.051	0.030	0.064	0.058	-7	
	Mean	0.880	0.872	0.838	0.865	35		Mean	0.064	0.033	0.069	0.053	-15	Positive
	1	0.887	0.859	0.850	0.850	28		1	0.061	0.030	0.063	0.038	-9	
2	2	0.881	0.876	0.826	0.868	46	2	2	0.087	0.058	0.075	0.056	-22	
2	3	0.898	0.871	0.859	0.863	30	2	3	0.066	0.031	0.065	0.057	-12	
	Mean	0.889	0.869	0.845	0.860	35		Mean	0.071	0.039	0.068	0.050	-14	Positive
	1	0.883	0.868	0.835	0.861	41		1	0.073	0.029	0.071	0.036	-11	
2	2	0.879	0.865	0.822	0.858	50	2	2	0.085	0.045	0.079	0.042	-15	
5	3	0.890	0.865	0.847	0.857	35	3	3	0.077	0.031	0.067	0.055	-19	
	Mean	0.884	0.866	0.835	0.858	42		Mean	0.078	0.035	0.072	0.044	-15	Positive
Mean for 3	assays	-	-	-	-	37	Mean for 3	3 assays	-	-	-	-	-15	Positive

Test concentrat	ion	200 μΜ	Singlet oxy	gan						Superoxide a	nion			Positive
D	D#	A440		A440((+)	P. 1, *1	Run	D. v. #	A560		A560(+)	D 1: *2	/
Run	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.894	0.873	0.696	0.867	192		1	0.047	0.032	0.153	0.036	97	
1	2	0.915	0.880	0.748	0.873	161	1	2	0.058	0.047	0.169	0.040	102	
1	3	0.903	0.882	0.681	0.875	216	1	3	0.047	0.030	0.164	0.061	107	
	Mean	0.904	0.878	0.708	0.872	190		Mean	0.051	0.036	0.162	0.045	102	Positive
	1	0.893	0.880	0.669	0.869	215		1	0.042	0.033	0.149	0.036	95	
2	2	0.886	0.889	0.706	0.882	171	2	2	0.052	0.052	0.164	0.050	100	
2	3	0.903	0.879	0.692	0.871	202	2	3	0.048	0.033	0.163	0.066	103	
	Mean	0.894	0.883	0.689	0.874	196		Mean	0.047	0.039	0.159	0.051	99	Positive
	1	0.892	0.886	0.677	0.877	207		1	0.054	0.033	0.151	0.039	87	
2	2	0.896	0.891	0.706	0.885	182	2	2	0.050	0.048	0.158	0.044	98	
3	3	0.909	0.892	0.695	0.884	205	3	3	0.049	0.032	0.155	0.057	96	
	Mean	0.899	0.890	0.693	0.882	198		Mean	0.051	0.037	0.155	0.047	94	Positive
Mean for 3	3 assays	-	-	-	-	195	Mean for 3	3 assays	-	-	-	-	98	Positive

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)

Negative: Singlet oxygen results <25 and Superoxide anion results <25

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Laboratory : 1 Chemical Name : Ketoprofen

Test concentration	20 μM
--------------------	-------

			Singlet oxy	gen						Superoxide a	nion			Positive
Run	D#	A440	(-)	A440(+)	D 1, *1	Run	Run#	A560	(-)	A560(+)	D 1, *2	/
Kun	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.864	0.865	0.822	0.856	34		1	0.064	0.033	0.049	0.036	-25	
1	2	0.869	0.880	0.807	0.874	53	1	2	0.059	0.033	0.042	0.039	-27	
1	3	0.874	0.873	0.829	0.865	37	1	3	0.073	0.029	0.047	0.050	-36	
	Mean	0.869	0.873	0.819	0.865	41		Mean	0.065	0.032	0.046	0.042	-29	Positive
	1	0.877	0.863	0.843	0.853	25		1	0.058	0.029	0.047	0.035	-25	
2	2	0.876	0.873	0.823	0.865	43	2	2	0.057	0.030	0.045	0.038	-26	
2	3	0.876	0.875	0.846	0.867	21	2	3	0.079	0.029	0.051	0.054	-42	
	Mean	0.876	0.870	0.837	0.861	30		Mean	0.065	0.029	0.048	0.043	-31	Positive
	1	0.864	0.844	0.816	0.836	42		1	0.047	0.030	0.050	0.037	-9	
2	2	0.864	0.844	0.799	0.842	60	2	2	0.033	0.052	0.044	0.040	-3	
3	3	0.862	0.851	0.814	0.845	42	3	3	0.046	0.032	0.051	0.075	-8	
	Mean	0.863	0.846	0.810	0.841	48		Mean	0.042	0.038	0.048	0.051	-7	Positive
Mean for 1	3 assays	-	-	-	-	40	Mean for 3	3 assays	-	-	-	-	-22	Positive *

Test concentrat	tion	$200~\mu M$												
			Singlet oxyg	gen						Superoxide a	nnion			Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560)(-)	A560((+)	D 1, *2	/
Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.878	0.871	0.612	0.862	258		1	0.034	0.028	0.132	0.037	87	
1	2	0.878	0.877	0.617	0.868	252	1	2	0.033	0.046	0.131	0.042	87	
1	3	0.882	0.880	0.626	0.871	247	1	3	0.034	0.031	0.141	0.061	96	
	Mean	0.879	0.876	0.618	0.867	252		Mean	0.034	0.035	0.135	0.046	90	Positive
	1	0.857	0.853	0.601	0.849	249		1	0.034	0.033	0.136	0.037	91	
2	2	0.863	0.859	0.606	0.852	249	2	2	0.032	0.048	0.137	0.039	93	
2	3	0.866	0.861	0.613	0.853	247	2	3	0.035	0.032	0.145	0.074	98	
	Mean	0.862	0.858	0.607	0.851	248		Mean	0.034	0.038	0.139	0.050	94	Positive
	1	0.868	0.884	0.605	0.878	256		1	0.034	0.032	0.142	0.037	98	
2	2	0.872	0.886	0.607	0.879	259	2	2	0.033	0.043	0.132	0.037	89	
3	3	0.873	0.880	0.618	0.873	249	3	3	0.034	0.030	0.140	0.061	95	
	Mean	0.871	0.883	0.610	0.877	255		Mean	0.034	0.035	0.138	0.045	94	Positive
Mean for 3	3 assays	-	-	-	-	252	Mean for 3	3 assays	-	-	-	-	93	Positive

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
: Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Call (Blank after exposure)

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm

A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

Laboratory : 1
Chemical Name : Levofloxacin

Test concentration	20	μM
--------------------	----	----

			Singlet oxy	gen						Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	D14-*1	Run	Run#	A560	(-)	A560((+)	D16-*2	/
Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results 1	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.866	0.865	0.829	0.856	29		1	0.037	0.033	0.224	0.036	177	
1	2	0.875	0.880	0.825	0.874	42	1	2	0.030	0.033	0.208	0.039	168	
1	3	0.872	0.873	0.838	0.865	27	1	3	0.033	0.029	0.214	0.050	171	
	Mean	0.871	0.873	0.831	0.865	33		Mean	0.033	0.032	0.215	0.042	172	Positive
	1	0.868	0.863	0.812	0.853	47		1	0.030	0.029	0.211	0.035	166	
2	2	0.876	0.873	0.822	0.865	46	2	2	0.044	0.030	0.209	0.038	152	
2	3	0.876	0.875	0.823	0.867	44	2	3	0.033	0.029	0.213	0.054	166	
	Mean	0.873	0.870	0.819	0.861	46		Mean	0.036	0.029	0.211	0.043	161	Positive
	1	0.861	0.844	0.822	0.836	34		1	0.060	0.030	0.217	0.037	144	
3	2	0.864	0.844	0.814	0.842	45	3	2	0.051	0.052	0.227	0.040	163	
3	3	0.865	0.851	0.832	0.845	28	3	3	0.067	0.032	0.224	0.075	144	
	Mean	0.863	0.846	0.823	0.841	36		Mean	0.059	0.038	0.223	0.051	150	Positive
Mean for 3	assays	-	-	-	-	38	Mean for 3	assays	-	-	-	-	161	Positive

			Singlet oxyg	gen						Superoxide a	nion			Positive
Run	D#	A440	(-)	A440((+)	D 1, *1	Run	Run#	A560	(-)	A560(+)	D 1, *2	/
Kun	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.866	0.871	0.632	0.862	225		1	0.076	0.028	0.449	0.037	362	
1	2	0.872	0.877	0.675	0.868	188	1	2	0.054	0.046	0.456	0.042	391	
1	3	0.887	0.880	0.679	0.871	199	1	3	0.082	0.031	0.453	0.061	360	
	Mean	0.875	0.876	0.662	0.867	204		Mean	0.071	0.035	0.453	0.046	371	Positive
	1	0.874	0.853	0.656	0.849	211		1	0.069	0.033	0.455	0.037	374	
2	2	0.863	0.859	0.684	0.852	173	2	2	0.046	0.048	0.479	0.039	422	
2	3	0.875	0.861	0.689	0.853	179	2	3	0.064	0.032	0.450	0.074	374	
	Mean	0.871	0.858	0.676	0.851	188		Mean	0.060	0.038	0.461	0.050	390	Positive
	1	0.865	0.884	0.668	0.878	191		1	0.074	0.032	0.447	0.037	363	
2	2	0.873	0.886	0.681	0.879	186	2	2	0.048	0.043	0.458	0.037	400	
3	3	0.905	0.880	0.701	0.873	197	3	3	0.073	0.030	0.457	0.061	375	
	Mean	0.881	0.883	0.683	0.877	191		Mean	0.065	0.035	0.454	0.045	379	Positive
Mean for 3	3 assavs	-	-	_	-	194	Mean for 3	assavs	-	-	_	-	380	Positive

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
: Mean (Blank before light exposure)

B : Mean (Blank after exposure)

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm

A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

*3 : Final decision

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

Laboratory Chemical Name Norfloxacin

Test concentration	20	μM
--------------------	----	----

			Singlet oxy	gen						Superoxide a	nion			Positive
Run	Run# -	A440((-)	A440((+)	D14-*1	Run	Run#	A560	(-)	A560(+)	D16-*2	/
Kuii	Kull# -	Test Chemical	Blank	Test Chemical	Blank	Results"	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.873	0.865	0.786	0.856	79		1	0.053	0.033	0.061	0.036	-2	
1	2	0.870	0.880	0.795	0.874	66	1	2	0.036	0.033	0.063	0.039	17	
1	3	0.875	0.873	0.765	0.865	102	1	3	0.054	0.029	0.061	0.050	-3	
	Mean	0.873	0.873	0.782	0.865	82		Mean	0.048	0.032	0.062	0.042	4	Positive
	1	0.867	0.863	0.779	0.853	79		1	0.051	0.029	0.062	0.035	-3	
2	2	0.869	0.873	0.795	0.865	65	2	2	0.035	0.030	0.061	0.038	13	
2	3	0.876	0.875	0.781	0.867	86	2	3	0.049	0.029	0.062	0.054	-2	
	Mean	0.871	0.870	0.785	0.861	77		Mean	0.045	0.029	0.062	0.043	3	Positive
	1	0.866	0.844	0.750	0.836	111		1	0.044	0.030	0.060	0.037	2	
2	2	0.865	0.844	0.733	0.842	127	2	2	0.033	0.052	0.060	0.040	14	
3	3	0.867	0.851	0.734	0.845	129	3	3	0.044	0.032	0.061	0.075	4	
	Mean	0.866	0.846	0.739	0.841	122		Mean	0.040	0.038	0.060	0.051	7	Positive
Mean for 3	assays	-	-	-	-	94	Mean for 3	3 assays	-	-	-	-	5	Positive

Test concentrat	ion	200 μΜ												
			Singlet oxyg	gen						Superoxide a	nnion			Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.870	0.871	0.643	0.862	218		1	0.037	0.028	0.162	0.037	114	
1	2	0.870	0.877	0.657	0.868	205	1	2	0.035	0.046	0.165	0.042	120	
1	3	0.871	0.880	0.654	0.871	209	1	3	0.043	0.031	0.168	0.061	114	
	Mean	0.870	0.876	0.651	0.867	211		Mean	0.038	0.035	0.165	0.046	116	Positive
	1	0.861	0.853	0.641	0.849	214		1	0.036	0.033	0.165	0.037	117	
2	2	0.862	0.859	0.650	0.852	205	2	2	0.036	0.048	0.168	0.039	120	
2	3	0.862	0.861	0.649	0.853	206	2	3	0.040	0.032	0.172	0.074	120	
	Mean	0.862	0.858	0.647	0.851	208		Mean	0.037	0.038	0.168	0.050	119	Positive
	1	0.859	0.884	0.633	0.878	219		1	0.037	0.032	0.159	0.037	112	
2	2	0.857	0.886	0.642	0.879	208	2	2	0.036	0.043	0.162	0.037	116	
3	3	0.870	0.880	0.650	0.873	213	3	3	0.039	0.030	0.167	0.061	118	
	Mean	0.862	0.883	0.642	0.877	213		Mean	0.037	0.035	0.163	0.045	115	Positive
Mean for 3	3 assays	-	-	-	-	211	Mean for 3	3 assays	-	-	-	-	117	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

: Absorbance before light exposure at 440 nm A440(-) A440(+) : Absorbance after light exposure at 440 nm Α : Mean (Blank before light exposure) В

: Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative: Singlet oxygen results <25 and Superoxide anion results <25 *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

: Absorbance before light exposure at 560 nm A560(-) A560(+): Absorbance after light exposure at 560 nm Α : Mean (Blank before light exposure) В : Mean (Blank after exposure)

Laboratory : 1
Chemical Name : Omeprazole

Test concentration	20 μM
--------------------	-------

			Singlet oxy	gen			•		•	Superoxide a	nion			Positive
Run	Pun#	A440	(-)	A440((+)	D14-*1	Run	Run#	A560	(-)	A560(+)	D14-*2	/
Kuii	Run#	Test Chemical	Blank	Test Chemical	Blank	Results 1	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results **2	Negative
	1	0.879	0.865	0.802	0.856	68		1	0.044	0.033	0.068	0.036	15	
1	2	0.885	0.880	0.812	0.874	65	1	2	0.039	0.033	0.066	0.039	17	
1	3	0.877	0.873	0.804	0.865	65	1	3	0.052	0.029	0.065	0.050	3	
	Mean	0.880	0.873	0.806	0.865	66		Mean	0.045	0.032	0.066	0.042	12	Positive
	1	0.865	0.863	0.785	0.853	72		1	0.041	0.029	0.063	0.035	8	
2	2	0.872	0.873	0.796	0.865	67	2	2	0.036	0.030	0.062	0.038	12	
2	3	0.878	0.875	0.795	0.867	74	2	3	0.045	0.029	0.062	0.054	3	
	Mean	0.872	0.870	0.792	0.861	71		Mean	0.041	0.029	0.062	0.043	8	Positive
	1	0.876	0.844	0.803	0.836	68		1	0.045	0.030	0.064	0.037	6	
2	2	0.875	0.844	0.808	0.842	62	2	2	0.041	0.052	0.066	0.040	12	
3	3	0.874	0.851	0.795	0.845	74	3	3	0.045	0.032	0.064	0.075	6	
	Mean	0.875	0.846	0.802	0.841	68		Mean	0.044	0.038	0.065	0.051	8	Positive
Mean for 3	3 assays	-	_	_	-	68	Mean for 3	3 assays	-	_	-	-	9	Positive

Test concentrat	1011	200 μΜ	Singlet oxyg	gen						Superoxide a	nion			Positive
Run	D#	A440	(-)	A440((+)	p. 1, *1	Run	Run#	A560	(-)	A560(+)	D 1, *2	/
Kun	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.845	0.871	0.861	0.862	-24		1	0.045	0.028	0.173	0.037	117	
1	2	0.829	0.877	0.857	0.868	-37	1	2	0.046	0.046	0.179	0.042	122	
1	3	0.849	0.880	0.867	0.871	-27	1	3	0.045	0.031	0.171	0.061	115	
	Mean	0.841	0.876	0.862	0.867	-29		Mean	0.045	0.035	0.174	0.046	118	Positive
	1	0.836	0.853	0.859	0.849	-29		1	0.057	0.033	0.175	0.037	107	
2	2	0.829	0.859	0.856	0.852	-35	2	2	0.047	0.048	0.174	0.039	116	
2	3	0.830	0.861	0.853	0.853	-30	2	3	0.055	0.032	0.172	0.074	105	
	Mean	0.832	0.858	0.856	0.851	-31		Mean	0.053	0.038	0.174	0.050	109	Positive
	1	0.838	0.884	0.844	0.878	-12		1	0.044	0.032	0.169	0.037	116	
2	2	0.833	0.886	0.854	0.879	-27	2	2	0.045	0.043	0.173	0.037	117	
3	3	0.839	0.880	0.867	0.873	-33	3	3	0.047	0.030	0.171	0.061	114	
	Mean	0.837	0.883	0.855	0.877	-24		Mean	0.045	0.035	0.171	0.045	116	Positive
Mean for 3	3 assays	-	-	-	-	-28	Mean for 3	3 assays	-	-	-	-	114	Positive

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

A S60(-) : Absorbance before light exposure at 560 nm
A S60(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Chemical Name Quinine

Test concentration	20 μM
--------------------	-------

			Singlet oxyg	gen						Superoxide a	nion			Positive
Run	D.,,,,#	A440	(-)	A440(+)	D 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	- Results ²	Negative
	1	0.867	0.865	0.733	0.856	126		1	0.064	0.033	0.081	0.036	8	
1	2	0.866	0.880	0.741	0.874	116	1	2	0.048	0.033	0.078	0.039	20	
1	3	0.873	0.873	0.735	0.865	131	1	3	0.067	0.029	0.080	0.050	3	
	Mean	0.869	0.873	0.736	0.865	124		Mean	0.060	0.032	0.080	0.042	10	Positive
	1	0.868	0.863	0.741	0.853	118		1	0.055	0.029	0.075	0.035	6	
2	2	0.865	0.873	0.737	0.865	119	2	2	0.044	0.030	0.079	0.038	21	
2	3	0.876	0.875	0.741	0.867	126	2	3	0.062	0.029	0.074	0.054	-2	
	Mean	0.870	0.870	0.740	0.861	121		Mean	0.054	0.029	0.076	0.043	8	Positive
	1	0.863	0.844	0.778	0.836	80		1	0.049	0.030	0.081	0.037	19	
2	2	0.867	0.844	0.736	0.842	126	2	2	0.033	0.052	0.079	0.040	33	
3	3	0.870	0.851	0.730	0.845	134	3	3	0.054	0.032	0.079	0.075	12	
	Mean	0.867	0.846	0.748	0.841	113		Mean	0.045	0.038	0.080	0.051	21	Positive
Mean for	3 assays	-	-	-	-	119	Mean for 3	assays	-	-	-	-	13	Positive *3

Test concentrat	ion	200 μΜ												
			Singlet oxyg	gen		<u>.</u>				Superoxide a	nnion			Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.853	0.871	0.396	0.862	448		1	0.034	0.028	0.429	0.037	384	
1	2	0.854	0.877	0.419	0.868	427	1	2	0.034	0.046	0.424	0.042	380	
1	3	0.863	0.880	0.430	0.871	424	1	3	0.037	0.031	0.446	0.061	398	
	Mean	0.857	0.876	0.415	0.867	433		Mean	0.035	0.035	0.433	0.046	387	Positive
	1	0.855	0.853	0.400	0.849	448		1	0.034	0.033	0.434	0.037	389	
2	2	0.844	0.859	0.417	0.852	420	2	2	0.035	0.048	0.438	0.039	391	
2	3	0.856	0.861	0.421	0.853	428	2	3	0.035	0.032	0.448	0.074	401	
	Mean	0.852	0.858	0.413	0.851	432		Mean	0.035	0.038	0.440	0.050	394	Positive
	1	0.883	0.884	0.398	0.878	479		1	0.060	0.032	0.424	0.037	354	
2	2	0.861	0.886	0.421	0.879	434	2	2	0.035	0.043	0.433	0.037	388	
3	3	0.885	0.880	0.425	0.873	455	3	3	0.035	0.030	0.441	0.061	396	
	Mean	0.876	0.883	0.415	0.877	456		Mean	0.043	0.035	0.433	0.045	379	Positive
Mean for 3	3 assays	-	-	-	-	440	Mean for 3	3 assays	-	-	-	-	387	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

: Absorbance before light exposure at 440 nm A440(-) A440(+) : Absorbance after light exposure at 440 nm Α : Mean (Blank before light exposure) В

: Mean (Blank after exposure)

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

: Absorbance before light exposure at 560 nm A560(-) A560(+): Absorbance after light exposure at 560 nm

Α : Mean (Blank before light exposure) В : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative: Singlet oxygen results <25 and Superoxide anion results <25

Laboratory : 1 Chemical Name : Sulisobenzone

Test concentration 2	20 μΜ
----------------------	-------

			Singlet oxyg	gen						Superoxide a	nnion			Positive
Run	D.,,,,,#	A440	(-)	A440((+)	D 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Run# -	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	- Results 2	Negative
	1	0.865	0.865	0.869	0.856	-11		1	0.040	0.033	0.047	0.036	-3	
1	2	0.877	0.880	0.875	0.874	-6	1	2	0.039	0.033	0.042	0.039	-7	
1	3	0.885	0.873	0.893	0.865	-16	1	3	0.044	0.029	0.047	0.050	-8	
	Mean	0.876	0.873	0.879	0.865	-11		Mean	0.041	0.032	0.045	0.042	-6	Negative
	1	0.862	0.863	0.854	0.853	-1		1	0.043	0.029	0.051	0.035	-6	
2	2	0.864	0.873	0.857	0.865	-2	2	2	0.038	0.030	0.042	0.038	-10	
2	3	0.870	0.875	0.864	0.867	-3	2	3	0.039	0.029	0.050	0.054	-4	
	Mean	0.865	0.870	0.858	0.861	-2		Mean	0.040	0.029	0.048	0.043	-7	Negative
	1	0.851	0.844	0.862	0.836	-16		1	0.055	0.030	0.047	0.037	-21	
2	2	0.854	0.844	0.852	0.842	-3	2	2	0.045	0.052	0.040	0.040	-18	
5	3	0.860	0.851	0.867	0.845	-12	3	3	0.054	0.032	0.040	0.075	-27	
	Mean	0.855	0.846	0.860	0.841	-10		Mean	0.051	0.038	0.042	0.051	-22	Negative
Mean for 3	3 assays	-	-	-	-	-8	Mean for 3	3 assays	-	-	-	-	-12	Negative

			Singlet oxy	gen						Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	D 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.879	0.871	0.864	0.862	6		1	0.048	0.028	0.045	0.037	-13	
1	2	0.876	0.877	0.871	0.868	-4	1	2	0.048	0.046	0.046	0.042	-13	
1	3	0.887	0.880	0.867	0.871	11	1	3	0.047	0.031	0.047	0.061	-12	
	Mean	0.881	0.876	0.867	0.867	4		Mean	0.048	0.035	0.046	0.046	-13	Negative
	1	0.876	0.853	0.860	0.849	9		1	0.043	0.033	0.048	0.037	-7	
2	2	0.868	0.859	0.859	0.852	2	2	2	0.047	0.048	0.050	0.039	-10	
2	3	0.880	0.861	0.862	0.853	11	2	3	0.046	0.032	0.050	0.074	-9	
	Mean	0.875	0.858	0.860	0.851	7		Mean	0.045	0.038	0.049	0.050	-9	Negative
	1	0.880	0.884	0.872	0.878	2		1	0.046	0.032	0.041	0.037	-15	
2	2	0.882	0.886	0.873	0.879	3	2	2	0.047	0.043	0.041	0.037	-16	
3	3	0.884	0.880	0.876	0.873	2	3	3	0.048	0.030	0.042	0.061	-16	
	Mean	0.882	0.883	0.874	0.877	2		Mean	0.047	0.035	0.041	0.045	-16	Negative
Mean for 3	3 assays	-	-	-	-	4	Mean for 3	assavs	-	-	-	-	-13	Negative

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
: Mean (Blank before light exposure)

B : Mean (Blank after exposure)

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

Laboratory : 2 Chemical Name : 5-FU

Test concentration 20 μM	1
--------------------------	---

			Singlet oxyg	gen						Superoxide a	nion			Positive
Run	Dun#	A440	(-)	A440(+)	D16-*1	Run	Run#	A560	(-)	A560(+)	D16-*2	/
Kuii	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	- Results ²	Negative
	1	1.005	1.005	0.998	1.004	1		1	0.034	0.033	0.037	0.037	-2	
1	2	1.007	1.005	0.999	0.998	2	1	2	0.034	0.035	0.038	0.040	-1	
1	3	1.015	1.009	1.000	0.998	9	1	3	0.033	0.034	0.038	0.039	0	
	Mean	1.009	1.006	0.999	1.000	4		Mean	0.034	0.034	0.038	0.039	-1	Negative
	1	0.999	1.004	0.995	1.000	-3		1	0.033	0.033	0.038	0.038	-1	
2	2	1.001	1.000	0.993	0.994	1	2	2	0.032	0.032	0.036	0.038	-2	
2	3	1.003	1.008	0.997	0.998	-1	2	3	0.034	0.032	0.038	0.038	-2	
	Mean	1.001	1.004	0.995	0.997	-1		Mean	0.033	0.032	0.037	0.038	-2	Negative
	1	0.991	0.994	0.985	0.965	-10		1	0.032	0.033	0.037	0.038	-3	
2	2	0.998	0.997	0.992	0.987	-10	2	2	0.032	0.032	0.038	0.045	-2	
3	3	0.999	0.997	0.990	0.989	-7	3	3	0.032	0.033	0.037	0.040	-3	
	Mean	0.996	0.996	0.989	0.980	-9		Mean	0.032	0.033	0.037	0.041	-3	Negative
Mean for 1	3 assays	-	-	-	-	-2	Mean for 3	assays	-	-	-	-	-2	Negative *3

est concentrat		200 μΜ	Singlet oxyg	gen						Superoxide a	nion			Positive
D	D4	A440	(-)	A440((+)	n . *1	D	D4	A560	0(-)	A560((+)	n 1. *2	/
Run	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Run	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	1.001	1.003	0.991	0.992	1		1	0.032	0.038	0.039	0.042	-4	
1	2	1.003	1.002	0.994	0.994	0	1	2	0.032	0.036	0.041	0.059	-2	
1	3	1.005	1.005	0.995	0.995	1	1	3	0.034	0.034	0.041	0.040	-4	
	Mean	1.003	1.003	0.993	0.994	1		Mean	0.033	0.036	0.040	0.047	-3	Negative
	1	1.002	1.000	0.993	0.991	-1		1	0.031	0.032	0.038	0.038	0	
2	2	0.997	0.995	0.990	0.988	-3	2	2	0.032	0.033	0.040	0.040	1	
2	3	1.007	1.011	0.998	0.996	-1	2	3	0.034	0.033	0.041	0.042	0	
	Mean	1.002	1.002	0.994	0.992	-2		Mean	0.032	0.033	0.040	0.040	0	Negative
	1	0.993	0.995	0.983	0.986	1		1	0.031	0.032	0.038	0.038	-4	
2	2	0.996	0.994	0.987	0.986	0	2	2	0.033	0.034	0.039	0.051	-5	
3	3	1.001	1.001	0.992	0.993	0	3	3	0.033	0.032	0.039	0.044	-5	
	Mean	0.997	0.997	0.987	0.988	0		Mean	0.032	0.033	0.039	0.044	-5	Negative
Mean for 3	3 assays	-	-	-	-	0	Mean for 3	3 assays	-	-	-	-	-3	Negative

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm

A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20

Negative: Singlet oxygen results <25 and Superoxide anion results <25

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Chemical Name

	Test	concentration	20 μM
--	------	---------------	-------

			Singlet oxy	gen						Superoxide a	nion			Positive
Run	D.,,,,#	A440((-)	A440((+)	n 1, *1	Run	Run#	A560	(-)	A560(+)	D 1, *2	/
Kun	Run# -	Test Chemical	Blank	Test Chemical	Blank	Results"	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	1.004	1.005	0.985	1.004	13		1	0.032	0.033	0.044	0.037	7	
1	2	1.006	1.005	0.996	0.998	4	1	2	0.035	0.035	0.046	0.040	6	
1	3	1.006	1.009	0.990	0.998	10	1	3	0.032	0.034	0.044	0.039	7	
	Mean	1.005	1.006	0.990	1.000	9		Mean	0.033	0.034	0.045	0.039	7	Negative
	1	1.001	1.004	0.987	1.000	7		1	0.032	0.033	0.048	0.038	10	
2	2	1.001	1.000	0.985	0.994	9	2	2	0.031	0.032	0.042	0.038	5	
2	3	0.995	1.008	0.986	0.998	2	2	3	0.033	0.032	0.042	0.038	3	
	Mean	0.999	1.004	0.986	0.997	6		Mean	0.032	0.032	0.044	0.038	6	Negative
	1	0.994	0.994	0.960	0.965	18		1	0.033	0.033	0.042	0.038	1	
3	2	1.000	0.997	0.982	0.987	2	3	2	0.032	0.032	0.042	0.045	2	
5	3	1.003	0.997	0.968	0.989	19	3	3	0.033	0.033	0.042	0.040	1	
	Mean	0.999	0.996	0.970	0.980	13		Mean	0.033	0.033	0.042	0.041	1	Negative
Mean for 3	3 assays	-	-	-	-	9	Mean for 3	assays	-	-	-	-	5	Negative

Γest concentrat	10n	200 μΜ	C:1-4							C				B 1.1
			Singlet oxy							Superoxide a				Positive
Run	Run#	A440	(-)	A440((+)	- Results*1	Run	Run#	A560	(-)	A560((+)	Results*2	/
Kuii	Ruiiπ	Test Chemical	Blank	Test Chemical	Blank	Results	Kuii	ιχαιιπ	Test Chemical	Blank	Test Chemical	Blank	Results	Negative
	1	0.993	1.003	0.922	0.992	62		1	0.032	0.038	0.107	0.042	64	
1	2	0.993	1.002	0.924	0.994	60	1	2	0.035	0.036	0.106	0.059	60	
1	3	0.993	1.005	0.927	0.995	57	1	3	0.033	0.034	0.112	0.040	68	
	Mean	0.993	1.003	0.924	0.994	60		Mean	0.033	0.036	0.108	0.047	64	Positive
	1	0.993	1.000	0.916	0.991	67		1	0.031	0.032	0.113	0.038	75	
2	2	0.988	0.995	0.914	0.988	64	2	2	0.032	0.033	0.112	0.040	73	
2	3	0.996	1.011	0.922	0.996	64	2	3	0.032	0.033	0.119	0.042	80	
	Mean	0.992	1.002	0.917	0.992	65		Mean	0.032	0.033	0.115	0.040	76	Positive
	1	0.987	0.995	0.917	0.986	61		1	0.032	0.032	0.093	0.038	50	
2	2	0.992	0.994	0.931	0.986	52	2	2	0.033	0.034	0.091	0.051	47	
3	3	0.991	1.001	0.920	0.993	62	3	3	0.033	0.032	0.097	0.044	53	
	Mean	0.990	0.997	0.923	0.988	58		Mean	0.033	0.033	0.094	0.044	50	Positive
Mean for 3	assays	-	-	-	-	61	Mean for 3	3 assays	-	-	-	-	63	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

: Absorbance before light exposure at 440 nm A440(-) A440(+) : Absorbance after light exposure at 440 nm Α : Mean (Blank before light exposure) В

: Mean (Blank after exposure)

Α

В

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 A560(-)

: Absorbance before light exposure at 560 nm A560(+): Absorbance after light exposure at 560 nm

: Mean (Blank before light exposure) : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative: Singlet oxygen results <25 and Superoxide anion results <25

Laboratory : 2 Chemical Name : Amiodarone

Test concentration 2	20 μΜ
----------------------	-------

			Singlet oxy	gen						Superoxide a	nion			Positive
Run	Dun#	A440((-)	A440((+)	D14-*1	Run	Run#	A560	(-)	A560((+)	D14-*2	/
Kuii	Run#	Test Chemical	Blank	Test Chemical	Blank	Results 1	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	1.096	1.005	0.994	1.004	96		1	0.102	0.033	0.103	0.037	-4	
1	2	1.103	1.005	1.007	0.998	90	1	2	0.104	0.035	0.107	0.040	-2	
1	3	1.099	1.009	1.000	0.998	93	1	3	0.102	0.034	0.100	0.039	-7	
	Mean	1.099	1.006	1.000	1.000	93		Mean	0.103	0.034	0.103	0.039	-4	Positive
	1	1.019	1.004	0.937	1.000	75		1	0.050	0.033	0.060	0.038	4	
2	2	1.021	1.000	0.950	0.994	64	2	2	0.049	0.032	0.058	0.038	3	
2	3	1.018	1.008	0.955	0.998	56	2	3	0.049	0.032	0.057	0.038	2	
	Mean	1.019	1.004	0.947	0.997	65		Mean	0.049	0.032	0.058	0.038	3	Positive
	1	1.102	0.994	0.995	0.965	91		1	0.091	0.033	0.093	0.038	-6	
2	2	1.095	0.997	0.994	0.987	85	2	2	0.090	0.032	0.094	0.045	-4	
3	3	1.097	0.997	1.000	0.989	81	3	3	0.089	0.033	0.092	0.040	-5	
	Mean	1.098	0.996	0.996	0.980	86		Mean	0.090	0.033	0.093	0.041	-5	Positive
Mean for 3	assays	-	-	-	-	81	Mean for 3	assays	-	-	-	-	-2	Positive

est concentrat	1011	200 μΜ	Singlet oxy	gen						Superoxide a	nion			Positive
D	D#	A440		A440((+)	D 1: *1	D	D#	A560	<u> </u>	A560((+)	D 1 *2	/
Run	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Run	Run#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	1.904	1.003	1.514	0.992	381		1	0.847	0.038	0.822	0.042	-36	
1	2	1.907	1.002	1.528	0.994	370	1	2	0.849	0.036	0.793	0.059	-67	
1	3	1.894	1.005	1.498	0.995	387	1	3	0.838	0.034	0.775	0.040	-74	
	Mean	1.902	1.003	1.513	0.994	379		Mean	0.845	0.036	0.797	0.047	-59	Positive
	1	1.797	1.000	1.485	0.991	302		1	0.813	0.032	0.641	0.038	-179	
2	2	1.804	0.995	1.467	0.988	327	2	2	0.813	0.033	0.633	0.040	-187	
2	3	1.793	1.011	1.478	0.996	305	2	3	0.806	0.033	0.597	0.042	-216	
	Mean	1.798	1.002	1.477	0.992	311		Mean	0.811	0.033	0.624	0.040	-194	Positive
	1	1.955	0.995	1.485	0.986	461		1	0.760	0.032	0.621	0.038	-150	
2	2	1.950	0.994	1.516	0.986	425	2	2	0.765	0.034	0.622	0.051	-154	
3	3	1.940	1.001	1.489	0.993	442	3	3	0.758	0.032	0.597	0.044	-172	
	Mean	1.948	0.997	1.497	0.988	443		Mean	0.761	0.033	0.613	0.044	-159	Positive
Mean for 3	3 assays	-	-	-	-	378	Mean for 3	3 assays	-	-	-	-	-137	Positive

*1 : decrease of A440 \times 10³ = (A440(-) - A440(+) - (A-B)) \times 1000 A440(-) : Absorbance before light exposure at 440 nm

A440(+)

A440(+)

Absorbance after light exposure at 440 nm

A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Laboratory : 2
Chemical Name : Chlorpromazine

Test concentration	20	μM
--------------------	----	----

			Singlet oxyg	gen						Superoxide a	nion			Positive
Run	D.100#	A440	(-)	A440(+)	D 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kuli	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	- Results ²	Negative
	1	0.994	1.005	0.919	1.004	69		1	0.033	0.033	0.059	0.037	21	
1	2	1.002	1.005	0.918	0.998	78	1	2	0.035	0.035	0.060	0.040	20	
1	3	1.001	1.009	0.916	0.998	79	1	3	0.034	0.034	0.060	0.039	21	
	Mean	0.999	1.006	0.918	1.000	75		Mean	0.034	0.034	0.060	0.039	21	Positive
	1	0.994	1.004	0.897	1.000	90		1	0.033	0.033	0.059	0.038	20	
2	2	0.999	1.000	0.910	0.994	82	2	2	0.033	0.032	0.061	0.038	22	
2	3	1.000	1.008	0.939	0.998	54	2	3	0.035	0.032	0.061	0.038	20	
	Mean	0.998	1.004	0.915	0.997	75		Mean	0.034	0.032	0.060	0.038	21	Positive
	1	0.999	0.994	0.929	0.965	54		1	0.034	0.033	0.060	0.038	18	
2	2	0.993	0.997	0.910	0.987	67	2	2	0.033	0.032	0.061	0.045	20	
3	3	1.001	0.997	0.925	0.989	60	3	3	0.033	0.033	0.059	0.040	18	
	Mean	0.998	0.996	0.921	0.980	60		Mean	0.033	0.033	0.060	0.041	19	Positive
Mean for 1	3 assays	-	-	=	-	70	Mean for 3	3 assays	-	-	-	-	20	Positive

Test concentrati	ion	$200~\mu M$												
			Singlet oxy	gen						Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.953	1.003	0.980	0.992	-36		1	0.035	0.038	0.137	0.042	91	
1	2	0.983	1.002	1.012	0.994	-38	1	2	0.042	0.036	0.137	0.059	84	
1	3	0.990	1.005	1.014	0.995	-33	1	3	0.035	0.034	0.140	0.040	94	
	Mean	0.975	1.003	1.002	0.994	-36		Mean	0.037	0.036	0.138	0.047	90	Positive
	1	0.967	1.000	0.995	0.991	-38		1	0.042	0.032	0.155	0.038	106	
2	2	1.003	0.995	1.025	0.988	-32	2	2	0.036	0.033	0.159	0.040	116	
2	3	0.982	1.011	1.006	0.996	-34	2	3	0.035	0.033	0.160	0.042	118	
	Mean	0.984	1.002	1.009	0.992	-35		Mean	0.038	0.033	0.158	0.040	113	Positive
	1	0.972	0.995	0.996	0.986	-33		1	0.034	0.032	0.142	0.038	97	
2	2	0.999	0.994	1.029	0.986	-39	2	2	0.035	0.034	0.142	0.051	96	
3	3	0.994	1.001	1.024	0.993	-39	3	3	0.036	0.032	0.148	0.044	101	
	Mean	0.988	0.997	1.016	0.988	-37		Mean	0.035	0.033	0.144	0.044	98	Positive
Mean for 3	assays	-	-	-	-	-36	Mean for 3	3 assays	-	-	-	-	100	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
: Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Α

В

*2: increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm

: Mean (Blank before light exposure): Mean (Blank after exposure)

Positive : Singlet oxygen results \ge 25 or Superoxide anion results \ge 20 Negative : Singlet oxygen results \le 25 and Superoxide anion results \le 25

Chemical Name : Diclofenac

Test concentration	20	μM
--------------------	----	----

			Singlet oxyg	gen						Superoxide a	nion			Positive
Run	D.,#	A440	(-)	A440((+)	D 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kuii	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results 2	Negative
	1	1.006	1.005	0.887	1.004	113		1	0.041	0.033	0.055	0.037	9	
1	2	1.006	1.005	0.906	0.998	94	1	2	0.039	0.035	0.053	0.040	9	
1	3	1.006	1.009	0.903	0.998	97	1	3	0.039	0.034	0.054	0.039	10	
	Mean	1.006	1.006	0.899	1.000	101		Mean	0.040	0.034	0.054	0.039	9	Positive
	1	1.004	1.004	0.870	1.000	127		1	0.038	0.033	0.054	0.038	10	
2	2	1.000	1.000	0.884	0.994	109	2	2	0.039	0.032	0.051	0.038	6	
2	3	1.003	1.008	0.892	0.998	104	2	3	0.037	0.032	0.052	0.038	9	
	Mean	1.002	1.004	0.882	0.997	113		Mean	0.038	0.032	0.052	0.038	8	Positive
	1	1.000	0.994	0.884	0.965	100		1	0.046	0.033	0.055	0.038	1	
2	2	1.006	0.997	0.911	0.987	79	2	2	0.039	0.032	0.053	0.045	6	
3	3	1.008	0.997	0.901	0.989	91	3	3	0.039	0.033	0.054	0.040	7	
	Mean	1.005	0.996	0.899	0.980	90		Mean	0.041	0.033	0.054	0.041	5	Positive
Mean for 3	3 assays	-	-	-	-	101	Mean for 3	3 assays	-	-	-	-	7	Positive

Test concentrat	ion	200 μΜ												
			Singlet oxyg	gen						Superoxide a	nnion			Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560)(-)	A560((+)	D 1, *2	/
Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results	Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.996	1.003	0.740	0.992	247		1	0.040	0.038	0.310	0.042	259	
1	2	0.997	1.002	0.751	0.994	237	1	2	0.038	0.036	0.312	0.059	263	
1	3	1.001	1.005	0.752	0.995	240	1	3	0.039	0.034	0.317	0.040	267	
	Mean	0.998	1.003	0.748	0.994	241		Mean	0.039	0.036	0.313	0.047	263	Positive
	1	1.005	1.000	0.721	0.991	274		1	0.040	0.032	0.347	0.038	300	
2	2	0.996	0.995	0.729	0.988	257	2	2	0.038	0.033	0.354	0.040	309	
2	3	1.001	1.011	0.733	0.996	258	2	3	0.038	0.033	0.352	0.042	307	
	Mean	1.001	1.002	0.728	0.992	263		Mean	0.039	0.033	0.351	0.040	305	Positive
	1	0.998	0.995	0.748	0.986	241		1	0.041	0.032	0.344	0.038	292	
2	2	0.998	0.994	0.766	0.986	223	2	2	0.037	0.034	0.349	0.051	301	
3	3	1.000	1.001	0.752	0.993	239	3	3	0.037	0.032	0.360	0.044	312	
	Mean	0.999	0.997	0.755	0.988	234		Mean	0.038	0.033	0.351	0.044	302	Positive
Mean for 3	3 assays	-	-	-	-	246	Mean for 3	3 assays	-	-	-	-	290	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

: Absorbance before light exposure at 440 nm A440(-) A440(+) : Absorbance after light exposure at 440 nm Α : Mean (Blank before light exposure)

В : Mean (Blank after exposure) *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

: Absorbance before light exposure at 560 nm A560(-) A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure)

Α В : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative: Singlet oxygen results <25 and Superoxide anion results <25

Laboratory : 2
Chemical Name : Doxycycline

Test concentration	20	μM
--------------------	----	----

		•	Singlet oxy	gen						Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	D16-*1	Run	Run#	A560	(-)	A560(+)	Results*2	/
Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results	Negative
	1	1.006	1.005	0.913	1.004	87		1	0.035	0.033	0.109	0.037	69	
1	2	1.009	1.005	0.927	0.998	76	1	2	0.035	0.035	0.105	0.040	65	
1	3	1.006	1.009	0.927	0.998	73	1	3	0.035	0.034	0.106	0.039	66	
	Mean	1.007	1.006	0.922	1.000	79		Mean	0.035	0.034	0.107	0.039	67	Positive
	1	1.007	1.004	0.935	1.000	65		1	0.034	0.033	0.075	0.038	35	
2	2	1.008	1.000	0.944	0.994	57	2	2	0.035	0.032	0.076	0.038	35	
2	3	1.003	1.008	0.946	0.998	50	2	3	0.033	0.032	0.075	0.038	36	
	Mean	1.006	1.004	0.942	0.997	57		Mean	0.034	0.032	0.075	0.038	35	Positive
	1	1.004	0.994	0.925	0.965	63		1	0.034	0.033	0.095	0.038	53	
3	2	1.006	0.997	0.922	0.987	68	3	2	0.035	0.032	0.098	0.045	55	
3	3	0.998	0.997	0.916	0.989	66	3	3	0.035	0.033	0.104	0.040	61	
	Mean	1.003	0.996	0.921	0.980	66		Mean	0.035	0.033	0.099	0.041	56	Positive
Mean for 3	assays	-	-	-	-	67	Mean for 3	3 assays	-	-	-	-	53	Positive

est concentrat	.1011	200 μΜ	Singlet oxy	gen						Superoxide a	nion			Positive
Dava	D.,#	A440		A440((+)	P. 1, *1	Dun	D#	A560	(-)	A560((+)	D 1, *2	/
Run	Run#	Test Chemical	Blank	Test Chemical	Blank	Results 1	Run	Run#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.974	1.003	0.762	0.992	203		1	0.041	0.038	0.453	0.042	401	
1	2	0.990	1.002	0.788	0.994	193	1	2	0.039	0.036	0.450	0.059	400	
1	3	0.989	1.005	0.782	0.995	198	1	3	0.040	0.034	0.433	0.040	382	
	Mean	0.984	1.003	0.777	0.994	198		Mean	0.040	0.036	0.445	0.047	394	Positive
	1	0.985	1.000	0.733	0.991	242		1	0.040	0.032	0.458	0.038	411	
2	2	0.992	0.995	0.759	0.988	223	2	2	0.040	0.033	0.461	0.040	414	
2	3	0.992	1.011	0.766	0.996	216	2	3	0.040	0.033	0.455	0.042	408	
	Mean	0.990	1.002	0.753	0.992	227		Mean	0.040	0.033	0.458	0.040	411	Positive
	1	0.981	0.995	0.774	0.986	198		1	0.039	0.032	0.426	0.038	376	
2	2	0.987	0.994	0.810	0.986	168	2	2	0.040	0.034	0.419	0.051	368	
3	3	0.992	1.001	0.792	0.993	191	3	3	0.039	0.032	0.411	0.044	361	
	Mean	0.987	0.997	0.792	0.988	186		Mean	0.039	0.033	0.419	0.044	368	Positive
Mean for 3	3 assays	-	-	-	-	204	Mean for 3	assays	-	-	-	-	391	Positive

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
: Mean (Blank before light exposure)

B : Mean (Blank after exposure)

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm

A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

Laboratory : 2
Chemical Name : Furosemide

Test concentration	20	μM
--------------------	----	----

			Singlet oxy	gen			•		•	Superoxide a	nion			Positive
Run	Pun#	A440	(-)	A440((+)	D16-*1	Run	Run#	A560	(-)	A560((+)	D16-*2	/
Kuii	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	1.008	1.005	0.973	1.004	29		1	0.037	0.033	0.053	0.037	11	
1	2	1.015	1.005	0.982	0.998	27	1	2	0.045	0.035	0.049	0.040	-1	
1	3	1.010	1.009	0.971	0.998	33	1	3	0.038	0.034	0.051	0.039	8	
	Mean	1.011	1.006	0.975	1.000	30		Mean	0.040	0.034	0.051	0.039	6	Positive
	1	1.004	1.004	0.963	1.000	34		1	0.038	0.033	0.056	0.038	12	
2	2	1.009	1.000	0.970	0.994	32	2	2	0.044	0.032	0.052	0.038	2	
2	3	1.006	1.008	0.971	0.998	28	2	3	0.036	0.032	0.051	0.038	9	
	Mean	1.006	1.004	0.968	0.997	31		Mean	0.039	0.032	0.053	0.038	8	Positive
	1	1.003	0.994	0.967	0.965	20		1	0.046	0.033	0.050	0.038	-4	
2	2	1.006	0.997	0.970	0.987	20	2	2	0.045	0.032	0.050	0.045	-3	
3	3	1.004	0.997	0.971	0.989	17	3	3	0.042	0.033	0.050	0.040	0	
	Mean	1.004	0.996	0.969	0.980	19		Mean	0.044	0.033	0.050	0.041	-2	Negative
Mean for 3	3 assays	-	-	-	-	27	Mean for 3	3 assays	-	_	-	-	4	Positive

			Singlet oxyg	gen						Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	D 1, *1	Run	Run# -	A560	(-)	A560(+)	D 1, *2	/
Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kull# -	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	1.003	1.003	0.862	0.992	132		1	0.038	0.038	0.106	0.042	57	
1	2	1.005	1.002	0.863	0.994	133	1	2	0.041	0.036	0.110	0.059	58	
1	3	1.000	1.005	0.870	0.995	121	1	3	0.038	0.034	0.113	0.040	64	
	Mean	1.003	1.003	0.865	0.994	129		Mean	0.039	0.036	0.110	0.047	60	Positive
	1	1.000	1.000	0.848	0.991	142		1	0.039	0.032	0.118	0.038	72	
2	2	1.005	0.995	0.847	0.988	148	2	2	0.041	0.033	0.126	0.040	78	
2	3	1.003	1.011	0.868	0.996	125	2	3	0.042	0.033	0.127	0.042	78	
	Mean	1.003	1.002	0.854	0.992	138		Mean	0.041	0.033	0.124	0.040	76	Positive
	1	0.999	0.995	0.856	0.986	134		1	0.038	0.032	0.114	0.038	65	
2	2	1.009	0.994	0.866	0.986	134	2	2	0.037	0.034	0.112	0.051	64	
3	3	1.001	1.001	0.867	0.993	125	3	3	0.038	0.032	0.115	0.044	66	
	Mean	1.003	0.997	0.863	0.988	131		Mean	0.038	0.033	0.114	0.044	65	Positiv
Mean for 3	3 assavs	_	-	_	-	133	Mean for 3	assavs	-		_	-	67	Positive

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm

A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

*3 : Final decision

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

Laboratory : 2 Chemical Name : Ketoprofen

Test concentration	20	μM
--------------------	----	----

		•	Singlet oxy	gen						Superoxide a	inion			Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560((+)	Results*2	/
Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results	Negative
	1	0.994	1.001	0.956	0.996	29		1	0.034	0.033	0.045	0.041	3	
1	2	1.000	1.003	0.961	0.993	30	1	2	0.034	0.033	0.046	0.041	4	
1	3	1.003	1.004	0.963	0.992	31	1	3	0.033	0.033	0.047	0.042	6	
	Mean	0.999	1.003	0.960	0.994	30		Mean	0.034	0.033	0.046	0.041	4	Positive
	1	0.998	1.000	0.952	0.991	38		1	0.032	0.032	0.043	0.038	3	
2	2	0.996	0.996	0.960	0.990	28	2	2	0.032	0.033	0.044	0.045	4	
2	3	1.000	1.003	0.965	0.995	27	2	3	0.032	0.034	0.043	0.040	3	
	Mean	0.998	1.000	0.959	0.992	31		Mean	0.032	0.033	0.043	0.041	3	Positive
	1	1.013	1.009	0.968	0.999	28		1	0.032	0.035	0.042	0.040	4	
2	2	1.011	1.007	0.945	0.977	49	2	2	0.033	0.034	0.047	0.041	8	
3	3	1.010	1.010	0.971	1.000	22	3	3	0.036	0.033	0.047	0.039	5	
	Mean	1.011	1.009	0.961	0.992	33		Mean	0.034	0.034	0.045	0.040	6	Positive
Mean for 3	assays	-	-	-	-	31	Mean for 3	3 assays	-	-	-	-	4	Positive

Test concentrat	tion	200 μΜ												
			Singlet oxy	gen						Superoxide a	anion			Positive
Run	Run#	A440	(-)	A440((+)	p. 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results"	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.999	1.007	0.774	0.999	213		1	0.033	0.032	0.150	0.041	109	
1	2	1.007	1.013	0.787	0.997	208	1	2	0.033	0.032	0.151	0.039	110	
1	3	1.005	1.009	0.785	0.998	208	1	3	0.033	0.034	0.142	0.042	101	
	Mean	1.004	1.010	0.782	0.998	210		Mean	0.033	0.033	0.148	0.041	107	Positive
	1	0.992	1.002	0.771	0.986	209		1	0.033	0.032	0.134	0.038	94	
2	2	0.999	1.002	0.787	0.993	200	2	2	0.032	0.032	0.133	0.040	94	
2	3	1.000	1.004	0.792	0.995	196	2	3	0.033	0.033	0.137	0.040	97	
	Mean	0.997	1.003	0.783	0.991	202		Mean	0.033	0.032	0.135	0.039	95	Positive
	1	1.001	1.002	0.742	0.990	249		1	0.032	0.033	0.160	0.038	122	
2	2	1.004	1.004	0.756	0.992	238	2	2	0.035	0.033	0.142	0.038	101	
3	3	1.006	1.008	0.757	1.003	239	3	3	0.034	0.033	0.144	0.040	104	
	Mean	1.004	1.005	0.752	0.995	242		Mean	0.034	0.033	0.149	0.039	109	Positive
Mean for 1	3 assays	-	-	-	-	218	Mean for 3	3 assays	-	-	-	-	104	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

A440(+)

A440(+)

A440(+)

A440(+)

A440(+)

A : Mean (Blank before light exposure at 440 nm

B : Mean (Blank after exposure)

roxide anion results >20

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

*3 : Final decision

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

Laboratory : 2
Chemical Name : Levofloxacin

	Test	concentration	20 μM
--	------	---------------	-------

			Singlet oxy	gen						Superoxide a	nion			Positive
Run	Run# -	A440	(-)	A440((+)	D14-*1	Run	Run#	A560	(-)	A560((+)	D14-*2	/
Kuii	Kull#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	1.000	1.001	0.961	0.996	30		1	0.033	0.033	0.228	0.041	187	
1	2	1.005	1.003	0.969	0.993	27	1	2	0.033	0.033	0.231	0.041	190	
1	3	1.008	1.004	0.971	0.992	28	1	3	0.034	0.033	0.237	0.042	195	
	Mean	1.004	1.003	0.967	0.994	28		Mean	0.033	0.033	0.232	0.041	191	Positive
	1	1.000	1.000	0.957	0.991	35		1	0.031	0.032	0.255	0.038	216	
2	2	1.001	0.996	0.965	0.990	28	2	2	0.031	0.033	0.252	0.045	213	
2	3	1.003	1.003	0.968	0.995	27	2	3	0.032	0.034	0.239	0.040	199	
	Mean	1.001	1.000	0.963	0.992	30		Mean	0.031	0.033	0.249	0.041	209	Positive
	1	1.004	1.009	0.965	0.999	22		1	0.033	0.035	0.219	0.040	180	
3	2	1.009	1.007	0.970	0.977	22	3	2	0.032	0.034	0.217	0.041	179	
5	3	1.005	1.010	0.971	1.000	17	3	3	0.033	0.033	0.222	0.039	183	
	Mean	1.006	1.009	0.969	0.992	20		Mean	0.033	0.034	0.219	0.040	181	Positive
Mean for 3	3 assays	-	-	-	-	26	Mean for 3	3 assays	-	-	-	-	194	Positive

Test concentrat	tion	$200~\mu M$												
			Singlet oxyg	gen						Superoxide a	nnion			Positive
D	D#	A440	(-)	A440((+)	n 1, *1	Run	Run#	A560	(-)	A560(+)	D 1, *2	/
Run	Run#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*1}	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.998	1.007	0.859	0.999	127		1	0.033	0.032	0.487	0.041	446	
1	2	1.005	1.013	0.867	0.997	126	1	2	0.032	0.032	0.496	0.039	456	
1	3	1.003	1.009	0.869	0.998	122	1	3	0.034	0.034	0.505	0.042	463	
	Mean	1.002	1.010	0.865	0.998	125		Mean	0.033	0.033	0.496	0.041	455	Positive
	1	0.994	1.002	0.850	0.986	132		1	0.032	0.032	0.507	0.038	468	
2	2	1.000	1.002	0.861	0.993	127	2	2	0.032	0.032	0.511	0.040	472	
2	3	1.000	1.004	0.867	0.995	121	2	3	0.032	0.033	0.515	0.040	476	
	Mean	0.998	1.003	0.859	0.991	127		Mean	0.032	0.032	0.511	0.039	472	Positive
	1	0.996	1.002	0.846	0.990	140		1	0.036	0.033	0.477	0.038	435	
2	2	1.003	1.004	0.845	0.992	148	2	2	0.033	0.033	0.482	0.038	443	
3	3	1.003	1.008	0.878	1.003	115	3	3	0.032	0.033	0.484	0.040	446	
	Mean	1.001	1.005	0.856	0.995	134		Mean	0.034	0.033	0.481	0.039	441	Positive
Mean for 1	3 assays	-	-	-	-	129	Mean for 3	3 assays	-	-	-	-	456	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

> 00

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm

A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

Chemical Name Norfloxacin

Test concentration	20	μM
--------------------	----	----

			Singlet oxy	gen						Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	D14-*1	Run	Run#	A560	(-)	A560((+)	D16-*2	/
Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results"	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.996	1.001	0.918	0.996	69		1	0.032	0.033	0.061	0.041	21	
1	2	0.996	1.003	0.930	0.993	57	1	2	0.032	0.033	0.061	0.041	21	
1	3	1.001	1.004	0.937	0.992	55	1	3	0.032	0.033	0.062	0.042	22	
	Mean	0.998	1.003	0.928	0.994	60		Mean	0.032	0.033	0.061	0.041	21	Positive
	1	0.993	1.000	0.920	0.991	65		1	0.031	0.032	0.066	0.038	27	•
2	2	0.995	0.996	0.933	0.990	54	2	2	0.031	0.033	0.067	0.045	28	
2	3	0.993	1.003	0.928	0.995	57	2	3	0.030	0.034	0.068	0.040	30	
	Mean	0.994	1.000	0.927	0.992	59		Mean	0.031	0.033	0.067	0.041	28	Positive
	1	1.001	1.009	0.928	0.999	56		1	0.031	0.035	0.061	0.040	24	
2	2	1.007	1.007	0.930	0.977	60	2	2	0.030	0.034	0.059	0.041	23	
3	3	1.002	1.010	0.936	1.000	49	3	3	0.032	0.033	0.061	0.039	23	
	Mean	1.003	1.009	0.931	0.992	55		Mean	0.031	0.034	0.060	0.040	23	Positive
Mean for 3	assays	-	-	-	-	58	Mean for 3	assays	-	-	-	-	24	Positive

est concentrat	ion	200 μΜ												
			Singlet oxy	gen						Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560(+)	D14-*2	/
Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results	Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.995	1.007	0.821	0.999	162		1	0.031	0.032	0.190	0.041	151	
1	2	0.998	1.013	0.834	0.997	152	1	2	0.031	0.032	0.185	0.039	146	
1	3	0.998	1.009	0.837	0.998	149	1	3	0.031	0.034	0.186	0.042	147	
	Mean	0.997	1.010	0.831	0.998	154		Mean	0.031	0.033	0.187	0.041	148	Positive
	1	0.992	1.002	0.825	0.986	155		1	0.031	0.032	0.207	0.038	169	
2	2	0.994	1.002	0.838	0.993	144	2	2	0.031	0.032	0.200	0.040	162	
2	3	0.996	1.004	0.838	0.995	146	2	3	0.032	0.033	0.201	0.040	162	
	Mean	0.994	1.003	0.834	0.991	148		Mean	0.031	0.032	0.203	0.039	164	Positive
	1	0.989	1.002	0.818	0.990	161		1	0.031	0.033	0.188	0.038	151	
2	2	1.000	1.004	0.827	0.992	163	2	2	0.032	0.033	0.185	0.038	147	
3	3	0.999	1.008	0.837	1.003	152	3	3	0.031	0.033	0.193	0.040	156	
	Mean	0.996	1.005	0.827	0.995	159		Mean	0.031	0.033	0.189	0.039	151	Positive
Mean for 3	assays	-	-	-	-	154	Mean for 3	3 assays	-	-	-	-	154	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

: Absorbance before light exposure at 440 nm A440(-) A440(+): Absorbance after light exposure at 440 nm Α : Mean (Blank before light exposure)

Negative: Singlet oxygen results <25 and Superoxide anion results <25

В : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

: Absorbance before light exposure at 560 nm A560(-) A560(+): Absorbance after light exposure at 560 nm Α : Mean (Blank before light exposure) В : Mean (Blank after exposure)

Laboratory : 2
Chemical Name : Omeprazole

Test concentration	20	μM
--------------------	----	----

			Singlet oxyg	gen						Superoxide a	nnion			Positive
Run	Run#	A440	(-)	A440((+)	D16-*1	Run	Run#	A560	(-)	A560((+)	Results*2	/
Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results	Negative
	1	0.997	1.001	0.930	0.996	58		1	0.034	0.033	0.078	0.041	36	
1	2	1.003	1.003	0.940	0.993	54	1	2	0.034	0.033	0.078	0.041	36	
1	3	1.013	1.004	0.946	0.992	58	1	3	0.034	0.033	0.079	0.042	37	
	Mean	1.004	1.003	0.939	0.994	57		Mean	0.034	0.033	0.078	0.041	36	Positive
	1	1.001	1.000	0.913	0.991	80		1	0.032	0.032	0.076	0.038	36	
2	2	1.006	0.996	0.943	0.990	55	2	2	0.033	0.033	0.075	0.045	34	
2	3	1.006	1.003	0.938	0.995	60	2	3	0.033	0.034	0.075	0.040	34	
	Mean	1.004	1.000	0.931	0.992	65		Mean	0.033	0.033	0.075	0.041	35	Positive
	1	1.008	1.009	0.930	0.999	61		1	0.037	0.035	0.078	0.040	35	
2	2	1.016	1.007	0.927	0.977	72	2	2	0.033	0.034	0.074	0.041	35	
3	3	1.012	1.010	0.952	1.000	43	3	3	0.037	0.033	0.080	0.039	37	
	Mean	1.012	1.009	0.936	0.992	59		Mean	0.036	0.034	0.077	0.040	36	Positive
Mean for 3	3 assays	-	-	-	-	60	Mean for 3	assays	-	-	-	-	36	Positive

			Singlet oxyg	gen						Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	D 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.993	1.007	1.036	0.999	-55		1	0.036	0.032	0.187	0.041	143	
1	2	0.998	1.013	1.033	0.997	-47	1	2	0.037	0.032	0.187	0.039	142	
1	3	1.003	1.009	1.027	0.998	-36	1	3	0.035	0.034	0.180	0.042	137	
	Mean	0.998	1.010	1.032	0.998	-46		Mean	0.036	0.033	0.185	0.041	141	Positive
	1	0.990	1.002	1.041	0.986	-63		1	0.035	0.032	0.187	0.038	145	
2	2	0.993	1.002	1.042	0.993	-61	2	2	0.036	0.032	0.190	0.040	147	
2	3	1.002	1.004	1.035	0.995	-45	2	3	0.036	0.033	0.192	0.040	149	
	Mean	0.995	1.003	1.039	0.991	-56		Mean	0.036	0.032	0.190	0.039	147	Positive
	1	0.990	1.002	1.033	0.990	-53		1	0.036	0.033	0.190	0.038	148	
2	2	1.006	1.004	1.041	0.992	-45	2	2	0.041	0.033	0.191	0.038	144	
3	3	0.998	1.008	1.037	1.003	-49	3	3	0.037	0.033	0.197	0.040	154	
	Mean	0.998	1.005	1.037	0.995	-49		Mean	0.038	0.033	0.193	0.039	149	Positive
Mean for 3	3 assays	-	-	-	-	-50	Mean for 3	3 assays	-	-	-	-	146	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Chemical Name Quinine

Test concentration	20 μM
--------------------	-------

			Singlet oxy	gen						Superoxide a	nnion			Positive
Run	Run#	A440	(-)	A440((+)	n 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.989	1.001	0.861	0.996	119		1	0.035	0.033	0.109	0.041	66	
1	2	1.003	1.003	0.881	0.993	113	1	2	0.033	0.033	0.105	0.041	64	
1	3	1.007	1.004	0.880	0.992	118	1	3	0.034	0.033	0.107	0.042	65	
	Mean	1.000	1.003	0.874	0.994	117		Mean	0.034	0.033	0.107	0.041	65	Positive
	1	0.997	1.000	0.860	0.991	129		1	0.033	0.032	0.107	0.038	66	
2	2	0.998	0.996	0.881	0.990	109	2	2	0.032	0.033	0.102	0.045	62	
2	3	1.001	1.003	0.885	0.995	108	2	3	0.034	0.034	0.108	0.040	66	
	Mean	0.999	1.000	0.875	0.992	115		Mean	0.033	0.033	0.106	0.041	65	Positive
	1	1.003	1.009	0.873	0.999	113		1	0.033	0.035	0.099	0.040	60	
2	2	1.005	1.007	0.877	0.977	111	2	2	0.033	0.034	0.096	0.041	57	
3	3	1.006	1.010	0.885	1.000	104	3	3	0.034	0.033	0.099	0.039	59	
	Mean	1.005	1.009	0.878	0.992	109		Mean	0.033	0.034	0.098	0.040	59	Positive
Mean for 3	3 assays	-	-	-	-	114	Mean for 3	3 assays	-	-	-	-	63	Positive

Test concentrat	ion	200 μΜ												
			Singlet oxy	gen		<u>.</u>				Superoxide a	anion			Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.993	1.007	0.568	0.999	413		1	0.033	0.032	0.443	0.041	402	
1	2	1.000	1.013	0.583	0.997	405	1	2	0.033	0.032	0.436	0.039	395	
1	3	0.999	1.009	0.587	0.998	400	1	3	0.033	0.034	0.428	0.042	387	
	Mean	0.997	1.010	0.579	0.998	406		Mean	0.033	0.033	0.436	0.041	395	Positive
	1	0.991	1.002	0.557	0.986	422		1	0.033	0.032	0.430	0.038	390	
2	2	0.994	1.002	0.583	0.993	399	2	2	0.032	0.032	0.427	0.040	388	
2	3	0.999	1.004	0.592	0.995	395	2	3	0.033	0.033	0.449	0.040	409	
	Mean	0.995	1.003	0.577	0.991	405		Mean	0.033	0.032	0.435	0.039	396	Positive
	1	0.996	1.002	0.556	0.990	430		1	0.034	0.033	0.408	0.038	368	
2	2	0.998	1.004	0.575	0.992	413	2	2	0.033	0.033	0.400	0.038	361	
3	3	0.999	1.008	0.588	1.003	401	3	3	0.033	0.033	0.427	0.040	388	
	Mean	0.998	1.005	0.573	0.995	415		Mean	0.033	0.033	0.412	0.039	372	Positive
Mean for 3	3 assays	-	-	-	-	409	Mean for 3	3 assays	-	-	-	-	388	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

: Absorbance before light exposure at 440 nm A440(-) A440(+) : Absorbance after light exposure at 440 nm Α : Mean (Blank before light exposure)

В : Mean (Blank after exposure)

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

: Absorbance before light exposure at 560 nm A560(-) A560(+): Absorbance after light exposure at 560 nm

Α : Mean (Blank before light exposure) В : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative: Singlet oxygen results <25 and Superoxide anion results <25

Laboratory : 2
Chemical Name : Sulisobenzone

Test concentration	20 μM

			Singlet oxy	gen						Superoxide a	anion			Positive
Run	D.,,,,#	A440	(-)	A440((+)	n 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kuii	Run# -	Test Chemical	Blank	Test Chemical	Blank	Results"	Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	1.006	1.001	0.998	0.996	-1		1	0.038	0.033	0.042	0.041	-4	
1	2	1.012	1.003	1.003	0.993	0	1	2	0.038	0.033	0.041	0.041	-5	
1	3	1.010	1.004	1.003	0.992	-2	1	3	0.036	0.033	0.044	0.042	0	
	Mean	1.009	1.003	1.001	0.994	-1		Mean	0.037	0.033	0.042	0.041	-3	Negative
	1	1.008	1.000	0.993	0.991	7		1	0.035	0.032	0.040	0.038	-3	
2	2	1.011	0.996	1.002	0.990	1	2	2	0.036	0.033	0.046	0.045	2	
2	3	1.007	1.003	0.999	0.995	0	2	3	0.038	0.034	0.041	0.040	-5	
	Mean	1.009	1.000	0.998	0.992	3		Mean	0.036	0.033	0.041	0.041	-2	Negative
	1	1.011	1.009	1.002	0.999	-8		1	0.039	0.035	0.042	0.040	-3	
2	2	1.016	1.007	1.006	0.977	-7	2	2	0.040	0.034	0.040	0.041	-6	
3	3	1.010	1.010	1.004	1.000	-11	3	3	0.038	0.033	0.042	0.039	-2	
	Mean	1.012	1.009	1.004	0.992	-9		Mean	0.039	0.034	0.041	0.040	-4	Negative
Mean for 3	assays	-	-	-	-	-2	Mean for 3	assays	-	-	-	-	-3	Negative

est concentrat	ion	200 μΜ	~							~				
			Singlet oxyg	gen						Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	- Results*1	Run	Run#	A560	(-)	A560((+)	D14-*2	/
Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results	Kuii	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	1.005	1.007	0.994	0.999	-1		1	0.037	0.032	0.039	0.041	-6	
1	2	1.013	1.013	1.000	0.997	1	1	2	0.037	0.032	0.040	0.039	-5	
1	3	1.006	1.009	0.996	0.998	-2	1	3	0.039	0.034	0.041	0.042	-6	
	Mean	1.008	1.010	0.997	0.998	-1		Mean	0.038	0.033	0.040	0.041	-6	Negative
	1	1.002	1.002	0.989	0.986	1		1	0.040	0.032	0.040	0.038	-7	
2	2	1.008	1.002	0.997	0.993	-1	2	2	0.038	0.032	0.040	0.040	-5	
2	3	1.006	1.004	0.997	0.995	-3	2	3	0.038	0.033	0.040	0.040	-5	
	Mean	1.005	1.003	0.994	0.991	-1		Mean	0.039	0.032	0.040	0.039	-6	Negative
	1	1.006	1.002	0.995	0.990	1		1	0.041	0.033	0.041	0.038	-6	
2	2	1.016	1.004	0.988	0.992	18	2	2	0.040	0.033	0.039	0.038	-7	
3	3	1.009	1.008	1.006	1.003	-7	3	3	0.041	0.033	0.042	0.040	-5	
	Mean	1.010	1.005	0.996	0.995	4		Mean	0.041	0.033	0.041	0.039	-6	Negative
Mean for 3	assays	-	-	-	-	1	Mean for 3	3 assays	-	-	-	-	-6	Negative

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25 *2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Laboratory : 3 Chemical Name : 5-FU

Test concentration 20 μM	
--------------------------	--

			Singlet oxy	gen						Superoxide a	nnion			Positive
D.,,,,	D#	A440	(-)	A440((+)	D 1, *1	Run	Run#	A560	(-)	A560(+)	D 1, *2	/
Run	Run# -	Test Chemical	Blank	Test Chemical	Blank	Results 1	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.984	0.982	0.975	0.967	-4		1	0.037	0.038	0.039	0.040	0	
1	2	0.980	0.980	0.969	0.967	-3	1	2	0.039	0.039	0.041	0.041	0	
1	3	0.983	0.976	0.974	0.964	-4	1	3	0.038	0.038	0.040	0.040	0	
	Mean	0.982	0.979	0.973	0.966	-4		Mean	0.038	0.038	0.040	0.040	0	Negative
	1	0.989	0.984	0.982	0.972	-4		1	0.037	0.038	0.040	0.041	1	
2	2	0.983	0.984	0.975	0.974	-4	2	2	0.038	0.040	0.041	0.041	0	
2	3	0.989	0.982	0.980	0.970	-3	2	3	0.038	0.038	0.041	0.040	1	
	Mean	0.987	0.984	0.979	0.972	-4		Mean	0.038	0.039	0.040	0.041	1	Negative
	1	0.982	0.987	0.974	0.978	-1		1	0.038	0.038	0.040	0.040	0	
2	2	0.982	0.976	0.972	0.965	1	2	2	0.037	0.039	0.039	0.041	0	
3	3	0.980	0.974	0.974	0.966	-3	3	3	0.038	0.039	0.065	0.041	25	
	Mean	0.981	0.979	0.974	0.970	-1		Mean	0.038	0.039	0.048	0.041	8	Negative
Mean for 3	3 assays	-	-	-	-	-3	Mean for 3	3 assays	-	-	-	-	3	Negative '

			Singlet oxyg	gen						Superoxide a	nnion			Positive
Run	Run#	A440	(-)	A440((+)	D 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results 1	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.996	0.996	0.987	0.982	-7		1	0.037	0.038	0.040	0.040	0	
1	2	0.999	1.001	0.991	0.987	-6	1	2	0.038	0.039	0.041	0.041	0	
1	3	1.004	1.000	0.993	0.983	-5	1	3	0.037	0.038	0.040	0.040	0	
	Mean	1.000	0.999	0.991	0.984	-6		Mean	0.037	0.038	0.040	0.041	0	Negative
	1	0.989	0.987	0.981	0.976	-2		1	0.037	0.038	0.039	0.040	0	
2	2	0.982	0.981	0.973	0.971	-1	2	2	0.038	0.039	0.040	0.041	0	
2	3	0.985	0.978	0.977	0.968	-2	2	3	0.038	0.038	0.040	0.040	1	
	Mean	0.985	0.982	0.977	0.972	-2		Mean	0.038	0.038	0.040	0.040	0	Negative
	1	0.982	0.982	0.973	0.970	-1		1	0.037	0.038	0.039	0.041	0	
2	2	0.984	0.987	0.975	0.980	-1	2	2	0.038	0.039	0.041	0.041	0	
3	3	0.991	0.994	0.982	0.984	-1	3	3	0.037	0.037	0.040	0.040	0	
	Mean	0.986	0.988	0.977	0.978	-1		Mean	0.037	0.038	0.040	0.041	0	Negative
Mean for 3	3 assays	-	-	-	-	-3	Mean for 3	3 assays	-	-	-	-	0	Negative

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Chemical Name

Test concentration	20	μM
--------------------	----	----

			Singlet oxy	gen						Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	D16-*1	Run	Run#	A560	(-)	A560((+)	D16-*2	/
Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.982	0.982	0.965	0.967	5		1	0.037	0.038	0.042	0.040	3	
1	2	0.985	0.980	0.964	0.967	8	1	2	0.038	0.039	0.043	0.041	3	
1	3	0.977	0.976	0.957	0.964	8	1	3	0.038	0.038	0.042	0.040	2	
	Mean	0.981	0.979	0.962	0.966	7		Mean	0.038	0.038	0.042	0.040	3	Negative
	1	0.989	0.984	0.973	0.972	4		1	0.037	0.038	0.042	0.041	4	
2	2	0.991	0.984	0.973	0.974	6	2	2	0.038	0.040	0.044	0.041	4	
2	3	0.983	0.982	0.965	0.970	7	2	3	0.038	0.038	0.043	0.040	3	
	Mean	0.988	0.984	0.970	0.972	6		Mean	0.038	0.039	0.043	0.041	4	Negative
	1	0.988	0.987	0.969	0.978	10		1	0.037	0.038	0.043	0.040	3	
2	2	0.981	0.976	0.962	0.965	9	2	2	0.038	0.039	0.042	0.041	1	
5	3	0.978	0.974	0.960	0.966	9	3	3	0.038	0.039	0.043	0.041	3	
	Mean	0.982	0.979	0.964	0.970	9		Mean	0.038	0.039	0.042	0.041	2	Negative
Mean for 3	3 assays	-	-	-	-	7	Mean for 3	3 assays	-	_	-	-	3	Negative

est concentrat	.1011	200 μΜ	Singlet oxyg	gen						Superoxide a	nion			Positive
D.	D //	A440		A440((+)	*1		D //	A560	<u> </u>	A560(+)	*2	/
Run	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Run	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.980	0.996	0.925	0.982	40		1	0.037	0.038	0.055	0.040	15	
1	2	0.989	1.001	0.930	0.987	43	1	2	0.039	0.039	0.057	0.041	15	
1	3	0.988	1.000	0.931	0.983	42	1	3	0.038	0.038	0.056	0.040	15	
	Mean	0.985	0.999	0.929	0.984	42		Mean	0.038	0.038	0.056	0.041	15	Positive
	1	0.975	0.987	0.911	0.976	54		1	0.037	0.038	0.055	0.040	16	
2	2	0.977	0.981	0.911	0.971	56	2	2	0.039	0.039	0.058	0.041	17	
2	3	0.970	0.978	0.905	0.968	55	2	3	0.038	0.038	0.060	0.040	20	
	Mean	0.974	0.982	0.909	0.972	55		Mean	0.038	0.038	0.057	0.040	18	Positive
	1	0.955	0.982	0.894	0.970	50		1	0.037	0.038	0.055	0.041	15	
2	2	0.980	0.987	0.918	0.980	52	2	2	0.039	0.039	0.056	0.041	14	
3	3	0.979	0.994	0.916	0.984	52	3	3	0.038	0.037	0.056	0.040	16	
	Mean	0.971	0.988	0.909	0.978	51		Mean	0.038	0.038	0.056	0.041	15	Positive
Mean for 3	3 assays	-	-	-	-	49	Mean for 3	3 assays	-	-	-	-	16	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

: Absorbance before light exposure at 440 nm A440(-) A440(+) : Absorbance after light exposure at 440 nm Α : Mean (Blank before light exposure) В

: Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative: Singlet oxygen results <25 and Superoxide anion results <25 *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

: Absorbance before light exposure at 560 nm A560(-) A560(+): Absorbance after light exposure at 560 nm Α : Mean (Blank before light exposure) В : Mean (Blank after exposure)

Laboratory Chemical Name Amiodarone

Test concentration 20 µM

			Singlet oxy	gen						Superoxide a	nnion			Positive
D	D#	A440	(-)	A440((+)	D 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Run	Run# -	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	- Results 2	Negative
	1	1.061	0.982	0.966	0.967	82		1	0.089	0.038	0.095	0.040	4	
1	2	1.059	0.980	0.962	0.967	84	1	2	0.091	0.039	0.097	0.041	4	
1	3	1.058	0.976	0.966	0.964	79	1	3	0.089	0.038	0.098	0.040	7	
	Mean	1.060	0.979	0.965	0.966	82		Mean	0.090	0.038	0.097	0.040	5	Positive
	1	1.058	0.984	0.967	0.972	79		1	0.079	0.038	0.088	0.041	7	
2	2	1.057	0.984	0.957	0.974	88	2	2	0.084	0.040	0.095	0.041	8	
2	3	1.062	0.982	0.972	0.970	78	2	3	0.085	0.038	0.097	0.040	10	
	Mean	1.059	0.984	0.965	0.972	82		Mean	0.083	0.039	0.093	0.041	8	Positive
	1	1.062	0.987	0.968	0.978	85		1	0.080	0.038	0.088	0.040	6	
2	2	1.053	0.976	0.957	0.965	87	2	2	0.084	0.039	0.093	0.041	7	
5	3	1.055	0.974	0.964	0.966	82	3	3	0.087	0.039	0.096	0.041	7	
	Mean	1.057	0.979	0.963	0.970	85		Mean	0.084	0.039	0.092	0.041	7	Positive
Mean for 3	3 assays	-	-	-	-	83	Mean for 3	3 assays	-	-	-	-	7	Positive

		•	Singlet oxyg	gen						Superoxide a	nnion			Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560(+)	D 1, *2	/
Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	- Results*2	Negative
	1	1.772	0.996	1.416	0.982	341		1	0.660	0.038	0.543	0.040	-119	
1	2	1.778	1.001	1.456	0.987	307	1	2	0.664	0.039	0.548	0.041	-119	
1	3	1.784	1.000	1.459	0.983	310	1	3	0.661	0.038	0.559	0.040	-105	
	Mean	1.778	0.999	1.444	0.984	319		Mean	0.662	0.038	0.550	0.041	-114	Positive
	1	1.830	0.987	1.403	0.976	416		1	0.504	0.038	0.523	0.040	17	
2	2	1.818	0.981	1.417	0.971	391	2	2	0.513	0.039	0.534	0.041	19	
2	3	1.820	0.978	1.439	0.968	371	2	3	0.534	0.038	0.559	0.040	24	
	Mean	1.823	0.982	1.420	0.972	393		Mean	0.517	0.038	0.539	0.040	20	Positive
	1	1.806	0.982	1.410	0.970	386		1	0.641	0.038	0.566	0.041	-79	
2	2	1.809	0.987	1.442	0.980	357	2	2	0.653	0.039	0.580	0.041	-76	
3	3	1.823	0.994	1.469	0.984	344	3	3	0.644	0.037	0.557	0.040	-90	
	Mean	1.813	0.988	1.440	0.978	362		Mean	0.646	0.038	0.567	0.041	-82	Positive
Mean for 3	assays	-	-	-	-	358	Mean for 3	3 assays	-	-	-	-	-59	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

A440(-) : Absorbance before light exposure at 440 nm A440(+): Absorbance after light exposure at 440 nm Α : Mean (Blank before light exposure) В

: Mean (Blank after exposure)

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

: Absorbance before light exposure at 560 nm A560(-) A560(+): Absorbance after light exposure at 560 nm Α : Mean (Blank before light exposure) В : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative: Singlet oxygen results <25 and Superoxide anion results <25

 Laboratory
 :
 3

 Chemical Name
 :
 Chlorpromazine

Test concentration 20 μM	
--------------------------	--

			Singlet oxyg	gen						Superoxide a	nion			Positive
Run	Dun#	A440((-)	A440(+)	D14-*1	Run	Run#	A560	(-)	A560(+)	D14-*2	/
Kun	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results*1	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results 2	Negative
	1	0.971	0.982	0.862	0.967	96		1	0.038	0.038	0.052	0.040	12	
1	2	0.968	0.980	0.873	0.967	82	1	2	0.038	0.039	0.051	0.041	11	
1	3	0.965	0.976	0.855	0.964	97	1	3	0.037	0.038	0.052	0.040	12	
	Mean	0.968	0.979	0.863	0.966	92		Mean	0.038	0.038	0.051	0.040	12	Positive
	1	0.980	0.984	0.867	0.972	101		1	0.038	0.038	0.052	0.041	12	
2	2	0.972	0.984	0.859	0.974	102	2	2	0.038	0.040	0.054	0.041	13	
2	3	0.969	0.982	0.860	0.970	97	2	3	0.038	0.038	0.053	0.040	13	
	Mean	0.974	0.984	0.862	0.972	100		Mean	0.038	0.039	0.053	0.041	13	Positive
	1	0.976	0.987	0.861	0.978	105		1	0.038	0.038	0.051	0.040	11	
2	2	0.968	0.976	0.857	0.965	102	2	2	0.037	0.039	0.051	0.041	12	
3	3	0.966	0.974	0.860	0.966	96	3	3	0.038	0.039	0.053	0.041	13	
	Mean	0.970	0.979	0.860	0.970	101		Mean	0.037	0.039	0.052	0.041	12	Positive
Aean for 3	3 assays	-	-	=	-	98	Mean for 3	3 assays	-	_	=	-	12	Positive

			Singlet oxyg	gen						Superoxide a	nion			Positive
D.,,,,	D.,,,,,#	A440	(-)	A440((+)	D 1, *1	Run	Run#	A560	(-)	A560(+)	Pagulta*2	/
Run	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.963	0.996	0.937	0.982	11		1	0.038	0.038	0.117	0.040	76	
1	2	0.992	1.001	0.945	0.987	32	1	2	0.039	0.039	0.120	0.041	78	
1	3	0.963	1.000	0.943	0.983	5	1	3	0.037	0.038	0.119	0.040	79	
	Mean	0.973	0.999	0.941	0.984	16		Mean	0.038	0.038	0.119	0.041	78	Positive
	1	0.960	0.987	0.926	0.976	24		1	0.038	0.038	0.112	0.040	72	
2	2	0.956	0.981	0.926	0.971	21	2	2	0.038	0.039	0.109	0.041	69	
2	3	0.951	0.978	0.930	0.968	12	2	3	0.037	0.038	0.120	0.040	81	
	Mean	0.956	0.982	0.927	0.972	19		Mean	0.038	0.038	0.114	0.040	74	Positive
	1	0.955	0.982	0.929	0.970	16		1	0.038	0.038	0.114	0.041	73	
2	2	0.956	0.987	0.935	0.980	11	2	2	0.040	0.039	0.117	0.041	75	
3	3	0.951	0.994	0.941	0.984	0	3	3	0.037	0.037	0.121	0.040	80	
	Mean	0.954	0.988	0.935	0.978	9		Mean	0.038	0.038	0.117	0.041	76	Positive
Mean for 3	assavs			_		15	Mean for 3	assavs			_		76	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm

A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

Laboratory : 3
Chemical Name : Diclofenac

Test concentration	20	μM
--------------------	----	----

			Singlet oxy	gen						Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	D14-*1	Run	Run#	A560	(-)	A560(+)	D14-*2	/
Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results"	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results **2	Negative
	1	0.982	0.982	0.808	0.967	160		1	0.039	0.038	0.049	0.040	8	
1	2	0.987	0.980	0.815	0.967	159	1	2	0.041	0.039	0.051	0.041	8	
1	3	0.978	0.976	0.818	0.964	146	1	3	0.040	0.038	0.051	0.040	9	
	Mean	0.982	0.979	0.814	0.966	155		Mean	0.040	0.038	0.050	0.040	8	Positive
	1	0.986	0.984	0.832	0.972	142		1	0.038	0.038	0.049	0.041	9	
2	2	0.995	0.984	0.829	0.974	154	2	2	0.040	0.040	0.051	0.041	9	
2	3	0.982	0.982	0.825	0.970	145	2	3	0.039	0.038	0.052	0.040	11	
	Mean	0.988	0.984	0.829	0.972	147		Mean	0.039	0.039	0.050	0.041	10	Positive
	1	0.989	0.987	0.837	0.978	143		1	0.039	0.038	0.049	0.040	8	
3	2	0.977	0.976	0.823	0.965	145	3	2	0.039	0.039	0.049	0.041	8	
3	3	0.980	0.974	0.824	0.966	147	3	3	0.039	0.039	0.051	0.041	10	
	Mean	0.982	0.979	0.828	0.970	145		Mean	0.039	0.039	0.050	0.041	9	Positive
Mean for 3	assays	-	-	-	-	149	Mean for 3	assays	-	-	-	-	9	Positive

Test concentrat	tion	$200~\mu M$												
			Singlet oxy	gen						Superoxide a	anion			Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.990	0.996	0.644	0.982	331		1	0.039	0.038	0.329	0.040	287	
1	2	1.002	1.001	0.659	0.987	328	1	2	0.040	0.039	0.346	0.041	303	
1	3	0.998	1.000	0.653	0.983	330	1	3	0.039	0.038	0.361	0.040	319	
	Mean	0.996	0.999	0.652	0.984	330		Mean	0.039	0.038	0.345	0.041	303	Positive
	1	0.985	0.987	0.640	0.976	335		1	0.039	0.038	0.303	0.040	263	
2	2	0.988	0.981	0.651	0.971	327	2	2	0.040	0.039	0.331	0.041	289	
2	3	0.978	0.978	0.641	0.968	327	2	3	0.039	0.038	0.346	0.040	306	
	Mean	0.984	0.982	0.644	0.972	330		Mean	0.039	0.038	0.327	0.040	286	Positive
	1	0.980	0.982	0.638	0.970	331		1	0.038	0.038	0.321	0.041	280	
2	2	0.992	0.987	0.652	0.980	330	2	2	0.040	0.039	0.341	0.041	299	
3	3	0.983	0.994	0.651	0.984	322	3	3	0.039	0.037	0.362	0.040	320	
	Mean	0.985	0.988	0.647	0.978	328		Mean	0.039	0.038	0.341	0.041	300	Positive
Mean for 3	3 assays	-	-	-	-	329	Mean for 3	3 assays	-	-	-	-	296	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20

Negative: Singlet oxygen results <25 and Superoxide anion results <25

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Chemical Name

	T	est concentration	20 μM
--	---	-------------------	-------

			Singlet oxyg	gen						Superoxide a	nion			Positive
Run	Dun#	A440	(-)	A440(+)	D16-*1	Run	Run#	A560	(-)	A560(+)	D14-*2	/
Kun	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	- Results ²	Negative
	1	0.973	0.982	0.913	0.967	47		1	0.039	0.038	0.084	0.040	43	
1	2	0.970	0.980	0.906	0.967	51	1	2	0.039	0.039	0.086	0.041	45	
1	3	0.969	0.976	0.904	0.964	52	1	3	0.039	0.038	0.087	0.040	46	
	Mean	0.971	0.979	0.908	0.966	50		Mean	0.039	0.038	0.085	0.040	45	Positive
	1	0.978	0.984	0.918	0.972	49		1	0.038	0.038	0.082	0.041	42	
2	2	0.977	0.984	0.913	0.974	52	2	2	0.039	0.040	0.086	0.041	46	
2	3	0.971	0.982	0.908	0.970	52	2	3	0.038	0.038	0.086	0.040	46	
	Mean	0.976	0.984	0.913	0.972	51		Mean	0.038	0.039	0.085	0.041	45	Positive
	1	0.981	0.987	0.917	0.978	55		1	0.038	0.038	0.082	0.040	42	
2	2	0.975	0.976	0.908	0.965	58	2	2	0.038	0.039	0.084	0.041	44	
3	3	0.970	0.974	0.906	0.966	55	3	3	0.039	0.039	0.087	0.041	46	
	Mean	0.975	0.979	0.910	0.970	56		Mean	0.038	0.039	0.084	0.041	44	Positive
Mean for 1	3 assays	-	-	-	-	52	Mean for 3	assays	-	-	-	-	45	Positive *

Γest concentrat	ion	200 μΜ												
			Singlet oxy	gen			Superoxide anion							Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560(+)		D14-*2	/
Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results	Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.959	0.996	0.767	0.982	177		1	0.041	0.038	0.348	0.040	304	
1	2	0.965	1.001	0.777	0.987	173	1	2	0.041	0.039	0.348	0.041	304	
1	3	0.965	1.000	0.775	0.983	175	1	3	0.041	0.038	0.359	0.040	315	
	Mean	0.963	0.999	0.773	0.984	175		Mean	0.041	0.038	0.352	0.041	308	Positive
	1	0.955	0.987	0.779	0.976	166		1	0.040	0.038	0.345	0.040	303	
2	2	0.949	0.981	0.784	0.971	156	2	2	0.041	0.039	0.355	0.041	312	
2	3	0.948	0.978	0.778	0.968	160	2	3	0.040	0.038	0.373	0.040	331	
	Mean	0.951	0.982	0.780	0.972	161		Mean	0.040	0.038	0.357	0.040	315	Positive
	1	0.950	0.982	0.766	0.970	174		1	0.040	0.038	0.348	0.041	305	
2	2	0.949	0.987	0.771	0.980	168	2	2	0.041	0.039	0.359	0.041	315	
3	3	0.953	0.994	0.775	0.984	167	3	3	0.040	0.037	0.364	0.040	321	
	Mean	0.950	0.988	0.771	0.978	170		Mean	0.040	0.038	0.357	0.041	314	Positive
Mean for 3	3 assays	-	-	-	-	169	Mean for 3	3 assays	-	-	-	-	312	Positive

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

: Absorbance before light exposure at 440 nm A440(-) A440(+) : Absorbance after light exposure at 440 nm Α : Mean (Blank before light exposure)

В : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative: Singlet oxygen results <25 and Superoxide anion results <25 *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

: Absorbance before light exposure at 560 nm A560(-) A560(+): Absorbance after light exposure at 560 nm Α : Mean (Blank before light exposure) В : Mean (Blank after exposure)

Laboratory : 3
Chemical Name : Furosemide

Test concentration	20 μM
--------------------	-------

			Singlet oxyg	gen						Superoxide a	nion			Positive
Run	Dun#	A440	(-)	A440(+)	D16-*1	Run	Run#	A560	(-)	A560(+)	D14-*2	/
Kun	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	- Results ²	Negative
	1	0.983	0.982	0.946	0.967	23		1	0.040	0.038	0.047	0.040	5	
1	2	0.980	0.980	0.943	0.967	23	1	2	0.041	0.039	0.047	0.041	5	
1	3	0.973	0.976	0.936	0.964	25	1	3	0.041	0.038	0.048	0.040	5	
	Mean	0.979	0.979	0.942	0.966	24		Mean	0.040	0.038	0.047	0.040	5	Negative
	1	0.993	0.984	0.956	0.972	25		1	0.039	0.038	0.047	0.041	6	
2	2	0.985	0.984	0.949	0.974	24	2	2	0.040	0.040	0.048	0.041	6	
2	3	0.982	0.982	0.946	0.970	24	2	3	0.040	0.038	0.047	0.040	5	
	Mean	0.987	0.984	0.950	0.972	24		Mean	0.040	0.039	0.047	0.041	6	Negative
	1	0.982	0.987	0.942	0.978	31		1	0.039	0.038	0.046	0.040	5	
2	2	0.979	0.976	0.939	0.965	31	2	2	0.039	0.039	0.046	0.041	5	
3	3	0.981	0.974	0.942	0.966	30	3	3	0.040	0.039	0.047	0.041	5	
	Mean	0.981	0.979	0.941	0.970	31		Mean	0.039	0.039	0.046	0.041	5	Positive
Mean for	3 assays	-	-	-	-	26	Mean for 3	assays	-	-	-	-	5	Positive *3

Test concentrati	ion	200 μΜ	G: 1.4							Superoxide a				
			Singlet oxyg						Positive					
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560((+)	D14-*2	/
Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Resuits	Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.992	0.996	0.864	0.982	113		1	0.040	0.038	0.083	0.040	40	
1	2	0.993	1.001	0.869	0.987	109	1	2	0.041	0.039	0.085	0.041	41	
1	3	0.992	1.000	0.869	0.983	108	1	3	0.040	0.038	0.087	0.040	44	
	Mean	0.992	0.992 0.999 0.867 0.984	110		Mean	0.040	0.038	0.085	0.041	42	Positive		
	1	0.984	0.987	0.854	0.976	120		1	0.040	0.038	0.084	0.040	42	
2	2	0.980	0.981	0.853	0.971	117	2	2	0.041	0.039	0.086	0.041	43	
2	3	0.974	0.978	0.850	0.968	114	2	3	0.040	0.038	0.088	0.040	47	
	Mean	0.979	0.982	0.852	0.972	117		Mean	0.040	0.038	0.086	0.040	44	Positive
	1	0.980	0.982	0.850	0.970	120		1	0.039	0.038	0.084	0.041	42	
2	2	0.982	0.987	0.856	0.980	116	2	2	0.040	0.039	0.085	0.041	42	
3	3	0.980	0.994	0.855	0.984	115	3	3	0.040	0.037	0.087	0.040	44	
	Mean	0.981	0.988	0.854	0.978	117		Mean	0.040	0.038	0.085	0.041	43	Positive
Mean for 3	assays	-	-	-	-	115	Mean for 3	3 assays	-	-	-	-	43	Positive

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)

Negative: Singlet oxygen results <25 and Superoxide anion results <25

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm

A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Laboratory : 3 Chemical Name : Ketoprofen

Test concentration	20 μM
--------------------	-------

			Singlet oxy	gen						Superoxide a	nion			Positive
Run Run		A440	(-)	A440((+)	n u *1	Run	Run#	A560	(-)	A560(+)	D 1, *2	/
Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	- Results*1	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.990	0.990	0.936	0.979	43		1	0.037	0.039	0.042	0.041	1	
1	2	0.996	0.997	0.946	0.985	40	1	2	0.039	0.039	0.043	0.041	1	
1	3	1.001	0.995	0.950	0.985	40	1	3	0.038	0.038	0.043	0.040	2	
	Mean	0.996	0.994	0.944	0.983	41		Mean	0.038	0.038	0.042	0.041	1	Positive
	1	0.993	0.994	0.942	0.985	42		1	0.037	0.038	0.041	0.040	2	
2	2	0.976	0.978	0.926	0.969	41	2	2	0.038	0.039	0.043	0.041	2	
2	3	0.976	0.965	0.930	0.957	37	2	3	0.038	0.038	0.042	0.040	2	
	Mean	0.982	0.979	0.933	0.970	40		Mean	0.038	0.038	0.042	0.040	2	Positive
	1	0.981	0.986	0.928	0.978	46		1	0.037	0.038	0.042	0.040	3	
2	2	0.980	0.976	0.930	0.968	44	2	2	0.038	0.039	0.041	0.041	2	
3	3	0.980	0.973	0.930	0.967	43	3	3	0.038	0.039	0.042	0.041	2	
	Mean	0.980	0.978	0.929	0.971	44		Mean	0.038	0.039	0.042	0.041	2	Positive
Mean for 3	3 assays	-	-	-	-	42	Mean for 3	3 assays	-	-	-	-	2	Positive

Test concentrat	ion	200 μΜ												
			Singlet oxyg	gen			Superoxide anion							Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560(+)		Results*2	/
Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results	Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results	Negative
	1	0.984	0.980	0.764	0.965	207		1	0.037	0.038	0.098	0.040	59	
1	2	0.991	0.989	0.770	0.977	207	1	2	0.038	0.039	0.094	0.041	54	
1	3	0.996	0.988	0.785	0.974	197	1	3	0.038	0.037	0.101	0.040	61	
	Mean	0.991	0.986 0.773 0.972 204		Mean	0.038	0.038	0.098	0.040	58	Positive			
	1	0.984	0.988	0.770	0.975	201		1	0.037	0.038	0.090	0.041	50	
2	2	0.989	0.993	0.780	0.981	196	2	2	0.039	0.039	0.094	0.042	52	
2	3	0.994	0.992	0.787	0.979	194	2	3	0.038	0.038	0.096	0.040	55	
	Mean	0.989	0.991	0.779	0.978	197		Mean	0.038	0.038	0.093	0.041	52	Positive
	1	0.994	1.000	0.770	0.991	214		1	0.038	0.038	0.089	0.041	50	
2	2	0.980	0.976	0.764	0.965	206	2	2	0.038	0.040	0.091	0.041	51	
3	3	0.979	0.969	0.763	0.959	206	3	3	0.038	0.039	0.093	0.041	53	
	Mean	0.984	0.982	0.766	0.972	209		Mean	0.038	0.039	0.091	0.041	51	Positive
Mean for 3	assays	-	-	-	-	203	Mean for 3	3 assays	-	-	-	-	54	Positive

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

: Mean (Blank after exposure)

Positive : Singlet oxygen results \ge 25 or Superoxide anion results \ge 20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Laboratory : 3
Chemical Name : Levofloxacin

Test concentration	20 μM
--------------------	-------

			Singlet oxy	gen				Superoxide anion						
Run	Run# -	A440	(-)	A440((+)	Results*1 Run		Run#	A560	(-)	A560(+)		D14-*2	/
Kuii	Kull# -	Test Chemical	Blank	Test Chemical	Blank	Results	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results**2	Negative
	1	0.989	0.990	0.943	0.979	35		1	0.037	0.039	0.202	0.041	162	
1	2	0.998	0.997	0.951	0.985	36	1	2	0.038	0.039	0.203	0.041	162	
1	3	0.997	0.995	0.953	0.985	33	1	3	0.038	0.038	0.204	0.040	163	
	Mean	0.995	0.994	0.949	0.983	35		Mean	0.038	0.038	0.203	0.041	162	Positive
	1	0.992	0.994	0.948	0.985	35		1	0.037	0.038	0.179	0.040	140	
2	2	0.979	0.978	0.936	0.969	34	2	2	0.039	0.039	0.169	0.041	129	
2	3	0.970	0.965	0.928	0.957	33	2	3	0.038	0.038	0.174	0.040	134	
	Mean	0.980	0.979	0.938	0.970	34		Mean	0.038	0.038	0.174	0.040	134	Positive
	1	0.987	0.986	0.941	0.978	39		1	0.037	0.038	0.178	0.040	139	
2	2	0.979	0.976	0.934	0.968	39	2	2	0.037	0.039	0.178	0.041	139	
3	3	0.979	0.973	0.935	0.967	38	3	3	0.038	0.039	0.186	0.041	146	
	Mean	0.982	0.978	0.936	0.971	39		Mean	0.037	0.039	0.181	0.041	141	Positive
Mean for 3	assays	-	-	-	-	36	Mean for 3	3 assays	-	-	-	-	146	Positive

Test concentrat	ion	200 μΜ												
			Singlet oxyg	gen			Superoxide anion							Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560((+)	D14-*2	/
Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.979	0.980	0.855	0.965	109		1	0.037	0.038	0.483	0.040	444	
1	2	0.989	0.989	0.853	0.977	123	1	2	0.038	0.039	0.485	0.041	445	
1	3	0.986	0.988	0.855	0.974	117	1	3	0.038	0.037	0.470	0.040	430	
	Mean 0.985 0.9	0.986	0.854	0.972	116		Mean	0.037	0.038	0.479	0.040	440	Positive	
	1	0.980	0.988	0.846	0.975	121		1	0.037	0.038	0.485	0.041	445	
2	2	0.988	0.993	0.860	0.981	115	2	2	0.040	0.039	0.501	0.042	458	
2	3	0.986	0.992	0.856	0.979	117	2	3	0.038	0.038	0.492	0.040	451	
	Mean	0.985	0.991	0.854	0.978	118		Mean	0.038	0.038	0.492	0.041	451	Positive
	1	0.994	1.000	0.854	0.991	129		1	0.038	0.038	0.484	0.041	444	
2	2	0.975	0.976	0.842	0.965	123	2	2	0.037	0.040	0.494	0.041	455	
3	3	0.969	0.969	0.838	0.959	122	3	3	0.039	0.039	0.472	0.041	431	
	Mean	0.979	0.982	0.844	0.972	125		Mean	0.038	0.039	0.483	0.041	443	Positive
Mean for 3	assays	-	-	-	-	120	Mean for 3	3 assays	-	-	-	-	445	Positive

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

Negative: Singlet oxygen results <25 and Superoxide anion results <25

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Laboratory : 3 Chemical Name : Norfloxacin

	Test	concentration	20 μM
--	------	---------------	-------

			Singlet oxy	gen						Superoxide a	nion			Positive
Run	Run# -	A440((-)	A440((+)	D14-*1	Run	Run#	A560	(-)	A560(+)	D14-*2	/
Kuii	Kull# -	Test Chemical	Blank	Test Chemical	Blank	- Results	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.991	0.990	0.922	0.979	57		1	0.037	0.039	0.058	0.041	18	
1	2	0.996	0.997	0.926	0.985	59	1	2	0.039	0.039	0.060	0.041	18	
1	3	0.996	0.995	0.927	0.985	58	1	3	0.038	0.038	0.059	0.040	18	
	Mean	0.994	0.994	0.925	0.983	58		Mean	0.038	0.038	0.059	0.041	18	Positive
	1	0.994	0.994	0.932	0.985	53		1	0.037	0.038	0.054	0.040	15	
2	2	0.976	0.978	0.913	0.969	54	2	2	0.039	0.039	0.055	0.041	15	
2	3	0.974	0.965	0.912	0.957	52	2	3	0.038	0.038	0.055	0.040	15	
	Mean	0.981	0.979	0.919	0.970	53		Mean	0.038	0.038	0.055	0.040	15	Positive
	1	0.982	0.986	0.920	0.978	55		1	0.037	0.038	0.055	0.040	16	
2	2	0.977	0.976	0.912	0.968	57	2	2	0.037	0.039	0.055	0.041	16	
3	3	0.974	0.973	0.912	0.967	55	3	3	0.038	0.039	0.057	0.041	16	
	Mean	0.978	0.978	0.915	0.971	56		Mean	0.038	0.039	0.056	0.041	16	Positive
Mean for 3	assays	-	-	-	-	56	Mean for 3	assays	-	-	-	-	16	Positive

			Singlet oxyg	gen		_				Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560(+)	D 1, *2	/
Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results	Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.982	0.980	0.807	0.965	161		1	0.039	0.038	0.158	0.040	117	
1	2	0.985	0.989	0.817	0.977	154	1	2	0.038	0.039	0.161	0.041	120	
1	3	0.988	0.988	0.823	0.974	150	1	3	0.037	0.037	0.164	0.040	125	
	Mean	0.985	0.986	0.816	0.972	155		Mean	0.038	0.038	0.161	0.040	121	Positive
	1	0.980	0.988	0.818	0.975	149		1	0.037	0.038	0.154	0.041	114	
2	2	0.983	0.993	0.829	0.981	141	2	2	0.039	0.039	0.158	0.042	117	
2	3	0.987	0.992	0.836	0.979	138	2	3	0.038	0.038	0.161	0.040	120	
	Mean	0.983	0.991	0.828	0.978	143		Mean	0.038	0.038	0.158	0.041	117	Positive
	1	0.991	1.000	0.818	0.991	163		1	0.038	0.038	0.140	0.041	101	
2	2	0.973	0.976	0.809	0.965	154	2	2	0.037	0.040	0.140	0.041	100	
3	3	0.969	0.969	0.809	0.959	149	3	3	0.039	0.039	0.146	0.041	105	
	Mean	0.978	0.982	0.812	0.972	155		Mean	0.038	0.039	0.142	0.041	102	Positive
Mean for 3	assays	-	-	-	-	151	Mean for 3	3 assays	-	-	-	-	113	Positive

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
: Mean (Blank before light exposure)

B : Mean (Blank after exposure)

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

*3: Final decision

Laboratory : 3 Chemical Name : Omeprazole

	Test	concentration	20 μM
--	------	---------------	-------

			Singlet oxyg	gen						Superoxide a	nion			Positive
Run	D#	A440((-)	A440((+)	D 1, *1	Run	Run#	A560	(-)	A560(+)	D 1, *2	/
Kun	Run# -	Test Chemical	Blank	Test Chemical	Blank	- Results*1	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.989	0.990	0.930	0.979	48		1	0.038	0.039	0.064	0.041	22	
1	2	0.982	0.997	0.924	0.985	48	1	2	0.039	0.039	0.063	0.041	21	
1	3	0.987	0.995	0.924	0.985	52	1	3	0.037	0.038	0.063	0.040	23	
	Mean	0.986	0.994	0.926	0.983	49		Mean	0.038	0.038	0.063	0.041	22	Positive
	1	0.976	0.994	0.918	0.985	49		1	0.038	0.038	0.056	0.040	16	
2	2	0.966	0.978	0.909	0.969	48	2	2	0.038	0.039	0.054	0.041	14	
2	3	0.962	0.965	0.908	0.957	45	2	3	0.038	0.038	0.053	0.040	13	
	Mean	0.968	0.979	0.912	0.970	47		Mean	0.038	0.038	0.054	0.040	14	Positive
	1	0.981	0.986	0.916	0.978	58		1	0.038	0.038	0.059	0.040	20	
3	2	0.974	0.976	0.912	0.968	55	3	2	0.038	0.039	0.058	0.041	18	
3	3	0.972	0.973	0.913	0.967	52	3	3	0.038	0.039	0.059	0.041	19	
	Mean	0.975	0.978	0.914	0.971	55		Mean	0.038	0.039	0.059	0.041	19	Positive
Aean for 3	assays	-	-	-	-	50	Mean for 3	assavs	-	-	-	-	18	Positive

est concentrat	ion	200 μΜ												
			Singlet oxyg	gen						Superoxide a	nion			Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560(+)	D14-*2	/
Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results	Kuii	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}	Negative
	1	0.966	0.980	0.990	0.965	-38		1	0.038	0.038	0.178	0.040	138	
1	2	0.969	0.989	0.989	0.977	-34	1	2	0.038	0.039	0.181	0.041	140	
1	3	0.965	0.988	0.988	0.974	-37	1	3	0.038	0.037	0.185	0.040	145	
	Mean	0.967	0.986	0.989	0.972	-36		Mean	0.038	0.038	0.181	0.040	141	Positive
	1	0.968	0.988	0.979	0.975	-24		1	0.039	0.038	0.170	0.041	128	
2	2	0.969	0.993	0.988	0.981	-33	2	2	0.041	0.039	0.174	0.042	130	
2	3	0.966	0.992	0.987	0.979	-34	2	3	0.038	0.038	0.177	0.040	136	
	Mean	0.967	0.991	0.985	0.978	-30		Mean	0.039	0.038	0.174	0.041	131	Positive
	1	0.975	1.000	1.025	0.991	-60		1	0.039	0.038	0.183	0.041	143	
2	2	0.958	0.976	1.005	0.965	-58	2	2	0.039	0.040	0.184	0.041	144	
3	3	0.954	0.969	1.003	0.959	-60	3	3	0.039	0.039	0.185	0.041	144	
	Mean	0.962	0.982	1.011	0.972	-59		Mean	0.039	0.039	0.184	0.041	144	Positive
Mean for 3	assays	-	-	-	-	-42	Mean for 3	3 assays	-	-	-	-	139	Positive

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

*3 : Final decision

Laboratory : 3 Chemical Name : Quinine

Test concentration	20 μM
--------------------	-------

			Singlet oxy	gen						Superoxide a	nnion			Positive
Dane	D#	A440	(-)	A440((+)	n 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Run	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.987	0.990	0.904	0.979	72		1	0.038	0.039	0.075	0.041	34	
1	2	0.999	0.997	0.910	0.985	78	1	2	0.038	0.039	0.075	0.041	34	
1	3	0.993	0.995	0.909	0.985	73	1	3	0.038	0.038	0.075	0.040	34	
	Mean	0.993	0.994	0.908	0.983	74		Mean	0.038	0.038	0.075	0.041	34	Positive
	1	0.985	0.994	0.890	0.985	86		1	0.037	0.038	0.067	0.040	28	
2	2	0.976	0.978	0.882	0.969	84	2	2	0.039	0.039	0.066	0.041	26	
2	3	0.965	0.965	0.883	0.957	74	2	3	0.038	0.038	0.065	0.040	25	
	Mean	0.975	0.979	0.885	0.970	81		Mean	0.038	0.038	0.066	0.040	26	Positive
	1	0.977	0.986	0.885	0.978	85		1	0.037	0.038	0.071	0.040	32	
2	2	0.968	0.976	0.878	0.968	84	2	2	0.037	0.039	0.070	0.041	31	
3	3	0.971	0.973	0.882	0.967	82	3	3	0.038	0.039	0.071	0.041	31	
	Mean	0.972	0.978	0.881	0.971	84		Mean	0.038	0.039	0.071	0.041	31	Positive
Mean for 3	3 assays	-	-	-	-	80	Mean for 3	3 assays	-	-	-	-	30	Positive

Test concentrat	ion	200 μΜ												
			Singlet oxyg	gen						Superoxide a	anion			Positive
Run	Run#	A440	(-)	A440((+)	Results*1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Kun	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.968	0.980	0.605	0.965	349		1	0.037	0.038	0.247	0.040	209	
1	2	0.982	0.989	0.621	0.977	347	1	2	0.038	0.039	0.253	0.041	213	
1	3	0.976	0.988	0.619	0.974	343	1	3	0.037	0.037	0.262	0.040	223	
	Mean	0.975	0.986	0.615	0.972	346		Mean	0.037	0.038	0.254	0.040	215	Positive
	1	0.976	0.988	0.632	0.975	331		1	0.037	0.038	0.246	0.041	206	
2	2	0.985	0.993	0.638	0.981	334	2	2	0.039	0.039	0.250	0.042	208	
2	3	0.975	0.992	0.616	0.979	346	2	3	0.038	0.038	0.255	0.040	214	
	Mean	0.978	0.991	0.628	0.978	337		Mean	0.038	0.038	0.250	0.041	209	Positive
	1	0.982	1.000	0.616	0.991	355		1	0.037	0.038	0.232	0.041	192	
2	2	0.967	0.976	0.612	0.965	345	2	2	0.038	0.040	0.232	0.041	192	
3	3	0.965	0.969	0.620	0.959	335	3	3	0.038	0.039	0.242	0.041	202	
	Mean	0.971	0.982	0.616	0.972	345		Mean	0.038	0.039	0.235	0.041	195	Positive
Mean for 3	3 assays	-	-	-	-	343	Mean for 3	3 assays	-	-	-	-	206	Positive

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

*3 : Final decision

Laboratory : 3 Chemical Name : Sulisobenzone

	T	est concentration	20 μM
--	---	-------------------	-------

			Singlet oxy	gen			•			Superoxide a	nion			Positive
Run	Dun#	A440	(-)	A440((+)	D14-*1	Run	Run#	A560	(-)	A560((+)	D16-*2	/
Kuii	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Kuii	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.990	0.990	0.984	0.979	-5		1	0.039	0.039	0.041	0.041	-2	
1	2	0.995	0.997	0.984	0.985	0	1	2	0.039	0.039	0.041	0.041	-2	
1	3	0.993	0.995	0.985	0.985	-3	1	3	0.039	0.038	0.040	0.040	-2	
	Mean	0.993	0.994	0.984	0.983	-3		Mean	0.039	0.038	0.040	0.041	-2	Negative
	1	0.991	0.994	0.985	0.985	-3		1	0.039	0.038	0.040	0.040	-1	•
2	2	0.978	0.978	0.971	0.969	-1	2	2	0.040	0.039	0.040	0.041	-1	
2	3	0.969	0.965	0.960	0.957	-1	2	3	0.039	0.038	0.040	0.040	-1	
	Mean	0.979	0.979	0.972	0.970	-2		Mean	0.039	0.038	0.040	0.040	-1	Negative
	1	0.988	0.986	0.979	0.978	2		1	0.038	0.038	0.040	0.040	-1	
2	2	0.983	0.976	0.974	0.968	2	2	2	0.038	0.039	0.040	0.041	-1	
3	3	0.976	0.973	0.966	0.967	3	3	3	0.040	0.039	0.042	0.041	0	
	Mean	0.982	0.978	0.973	0.971	2		Mean	0.039	0.039	0.040	0.041	-1	Negative
Mean for 3	assays	-	-	-	-	-1	Mean for 3	assays	-	-	-	-	-1	Negative

			Singlet oxyg	gen						Superoxide a	inion			Positive
D	D.,,,,,#	A440	(-)	A440((+)	D 1, *1	Run	Run#	A560	(-)	A560((+)	D 1, *2	/
Run	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results	Kun	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Negative
	1	0.982	0.980	0.977	0.965	-9		1	0.040	0.038	0.040	0.040	-1	
1	2	0.984	0.989	0.979	0.977	-9	1	2	0.040	0.039	0.041	0.041	-1	
1	3	0.988	0.988	0.983	0.974	-9	1	3	0.039	0.037	0.040	0.040	-1	
	Mean	0.985	0.986	0.980	0.972	-9		Mean	0.039	0.038	0.040	0.040	-1	Negativ
	1	0.983	0.988	0.974	0.975	-4		1	0.040	0.038	0.040	0.041	-3	
2	2	0.988	0.993	0.978	0.981	-3	2	2	0.040	0.039	0.040	0.042	-3	
2	3	0.986	0.992	0.978	0.979	-4	2	3	0.040	0.038	0.040	0.040	-3	
	Mean	0.986	0.991	0.977	0.978	-4		Mean	0.040	0.038	0.040	0.041	-3	Negative
	1	1.000	1.000	0.995	0.991	-4		1	0.039	0.038	0.039	0.041	-2	
2	2	0.985	0.976	0.979	0.965	-4	2	2	0.041	0.040	0.039	0.041	-4	
3	3	0.976	0.969	0.969	0.959	-4	3	3	0.041	0.039	0.040	0.041	-2	
	Mean	0.987	0.982	0.981	0.972	-4		Mean	0.040	0.039	0.040	0.041	-3	Negative
Mean for 3	assavs	-	_	_	-	-6	Mean for 3	assavs			-		-2	Negative

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
: Mean (Blank before light exposure)

B : Mean (Blank after exposure)

. 20

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm

A : Mean (Blank before light exposure)
B : Mean (Blank after exposure)

Positive : Singlet oxygen results ≥25 or Superoxide anion results ≥20 Negative : Singlet oxygen results <25 and Superoxide anion results <25

*3 : Final decision

Appendix 5 Irradiance and temperature during the irradiation in the Phase 2 study

Laboratory	1			-													
Experimental No. (US-)			001	002	003	004	005	006	007	023	024	025	026	027	028	029	030
	Beginning of	A	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
UVA intensity	Irradiation	В	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
(mW/cm^2)	End of	A	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
	Irradiation	В	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
T (9C)	Beginning of Irradiation		29	27	28	29	27	27	27	24	26	26	27	27	26	27	25
Temperature (°C)	End of Irradiation		27	28	28	28	28	29	28	25	26	26	25	26	26	26	25
Experimental No. (US-)			031	032	033	034	035	036	<u>-</u>								
	Beginning of	A	1.8	1.8	1.8	1.8	1.8	1.8									
UVA intensity	Irradiation	В	2.1	2.1	2.1	2.1	2.1	2.1	_								
(mW/cm^2)	End of	A	1.8	1.8	1.8	1.8	1.8	1.8	-								
	Irradiation	В	2.1	2.1	2.1	2.1	2.1	2.1									
Temperature (°C)	Beginning of Irradiation		25	25	27	24	24	26	-								
remperature (C)	End of Irradiation		24	25	26	24	24	24	-								

Thermometer: Suntest CPS+ (Atlas)

A: Irradiances which were measured with each test facility's UVA detector.

B: Standardized irradiances which were calculated as the irradiances by the calibrated UVA detector Dr. Hönle was transferred to each facility and the conversion factor for the standardized irradiances was prepared based on the value

B=A \times f f: correlation factor on the values of the UVA detectors (= 1.18)

Appendix 5 Irradiance and temperature during the irradiation in the Phase 2 study

Laboratory	2			_													
Experimental No. (FDSC-)			001	002	003	004	005	006	007	008	009	010	011	012	013	014	015
	Beginning of	A	1.435	1.439	1.437	1.439	1.437	1.437	1.436	1.441	1.442	1.437	1.424	1.428	1.420	1.422	1.426
UVA intensity	Irradiation	В	1.9	1.9	1.9	1.9	1.9	1.9	1.9	2.0	2.0	1.9	1.8	1.9	1.8	1.8	1.9
(mW/cm^2)	End of	A	1.437	1.427	1.431	1.450	1.440	1.431	1.423	1.434	1.436	1.434	1.429	1.433	1.433	1.426	1.424
	Irradiation	В	1.9	1.9	1.9	2.0	1.9	1.9	1.8	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.8
T(0C)	Beginning of Irradiation		22.8	24.9	24.1	24.1	24.8	24.6	23.6	24.7	23.7	24.4	24.6	24.0	25.0	24.9	24.9
Temperature (°C)	End of Irradiation		25.0	25.0	24.9	24.9	25.0	25.2	24.9	24.9	25.0	24.9	25.2	25.1	25.1	25.0	25.2
Experimental No. (FDSC-)			016	017	018	019	020	021	022	023	024	025	026	-			
	Beginning of	A	1.426	1.422	1.434	1.432	1.435	1.419	1.424	1.426	1.439	1.434	1.440	-			
UVA intensity	Irradiation	В	1.9	1.8	1.9	1.9	1.9	1.8	1.8	1.9	1.9	1.9	1.9	_			
(mW/cm^2)	End of	A	1.423	1.424	1.446	1.437	1.438	1.426	1.436	1.424	1.423	1.436	1.442				
	Irradiation	В	1.8	1.8	2.0	1.9	1.9	1.9	1.9	1.8	1.8	1.9	2.0	_			
Temperature (°C)	Beginning of Irradiation		24.9	25.4	24.4	24.8	24.9	24.5	24.8	24.9	24.8	24.8	24.3	_			
remperature (C)	End of Irradiation		25.0	25.2	24.8	24.8	24.9	24.9	24.9	25.1	25.1	25.0	24.9	-			

A : Irradiances which were measured with each test facility's UVA detector.

B : Standardized irradiances which were calculated as the irradiances by the calibrated UVA detector Dr.Hőnle was transferred to each facility and the conversion factor for the standardized irradiances was prepared based on the value from the UVA detectors.

B=A \times f · 7.3943 f : correlation factor on the values of the UVA detectors (=6.4855) Thermometer : Thermo Recorder RTR-52 (TANDD)

Appendix 5 Irradiance and temperature during the irradiation in the Phase 2 study

Laboratory	3			-											
Experimental No. (MT-)			001	002	003	004	005	006	007	008	009	010	011	012	013
	Beginning of	A	1.0	1.1	1.1	1.2	1.1	1.2	1.1	1.2	1.1	1.1	1.2	1.2	1.2
UVA intensity	Irradiation	В	1.8	2.0	2.0	2.2	2.0	2.2	2.0	2.2	2.0	2.0	2.2	2.2	2.2
(mW/cm^2)	End of	Α	1.2	1.1	1.1	1.1	1.2	1.2	1.2	1.1	1.1	1.1	1.2	1.2	1.2
	Irradiation	В	2.2	2.0	2.0	2.0	2.2	2.2	2.2	2.0	2.0	2.0	2.2	2.2	2.2
Towns anothers (%C)	Beginning of Irradiation		25.4	24.6	23.8	25.3	24.6	24.0	25.5	27.6	21.9	24.7	23.3	23.5	23.0
Temperature (°C)	End of Irradiation		28,3	23.8	23,7	24.6	24.0	24.2	28.3	26.4	26.6	23.6	23.5	23.0	23.3
Experimental No. (MT-)			016	018	019	020	021	022	023	=					
	Beginning of	A	1.2	1.2	1.2	1.2	1.2	1.1	1.1	-					
UVA intensity	Irradiation	В	2.2	2.2	2.2	2.2	2.2	2.0	2.0						
(mW/cm^2)	End of	A	1.2	1.2	1.2	1.2	1.2	1.1	1.1	-					
	Irradiation	В	2.2	2.2	2.2	2.2	2.2	2.0	2.0						
Temperature (°C)	Beginning of Irradiation		25.0	25.5	24.3	25.1	26.5	24.4	24.6						
remperature (C)	End of Irradiation		26.2	26.3	25.1	26.5	25.9	26.0	25.8	-					

014

1.1

2.2

24.5

23.8

015

1.2

2.0

23.6

24.6

Thermometer: ondotori Jr. TR-51i (TANDD)

A: Irradiances which were measured with each test facility's UVA detector.

B: Standardized irradiances which were calculated as the irradiances by the calibrated UVA detector Dr.Hőnle was transferred to each facility and the conversion factor for the standardized irradiances was prepared based on the value from the UVA detectors.

 $B=A \times f$ f: correlation factor on the values of the UVA detectors (= 1.8)

Laboratory :

Chemical Name : Qunine HCl

			Singlet oxy	gen						Superoxide	anion		
Experimental	Run# -	A440		A440((+)	Results*1	Experimental	Run#	A560	(-)	A560((+)	Results*2
No.	Kun# -	Γest Chemical	Blank	Test Chemical	Blank	- Results	No.	Kun#	Test Chemical	Blank	Test Chemical	Blank	- Results
	1	1.023	1.014	0.481	1.006	531		1	0.049	0.033	0.463	0.046	400
US-001	2	1.029	1.028	0.506	1.014	512	US-001	2	0.042	0.046	0.461	0.053	405
03-001	3	1.036	1.029	0.525	1.020	501	03-001	3	0.047	0.034	0.465	0.056	405
	Mean	1.029	1.024	0.504	1.013	515		Mean	0.046	0.038	0.463	0.052	403
	1	1.013	1.017	0.470	1.007	534		1	0.114	0.031	0.457	0.038	336
US-002	2	1.040	1.028	0.504	1.021	527	US-002	2	0.110	0.043	0.453	0.041	336
0.5-002	3	1.037	1.031	0.516	1.020	512	US-002	3	0.115	0.030	0.457	0.048	335
	Mean	1.030	1.025	0.497	1.016	524		Mean	0.113	0.035	0.455	0.042	336
	1	1.018	1.011	0.459	1.001	549		1	0.046	0.029	0.454	0.049	385
US-003	2	1.032	1.028	0.487	1.017	535	US-003	2	0.042	0.044	0.448	0.052	383
08-003	3	1.035	1.024	0.493	1.016	532	08-003	3	0.046	0.030	0.471	0.070	402
	Mean	1.028	1.021	0.480	1.011	539		Mean	0.044	0.034	0.457	0.057	390
	1	0.996	0.998	0.441	0.987	545		1	0.052	0.029	0.370	0.046	293
110 004	2	1.028	1.027	0.481	1.019	537	US-004	2	0.045	0.029	0.381	0.059	313
US-004	3	1.029	1.021	0.491	1.010	528	05-004	3	0.066	0.029	0.378	0.054	288
	Mean	1.018	1.015	0.471	1.005	537		Mean	0.054	0.029	0.376	0.053	298
	1	1.006	1.015	0.454	1.004	541		1	0.040	0.029	0.470	0.043	419
US-005	2	1.011	1.012	0.477	1.002	523	US-005	2	0.036	0.043	0.470	0.044	423
03-003	3	1.015	1.016	0.492	1.007	511	03-003	3	0.041	0.029	0.464	0.046	412
	Mean	1.011	1.015	0.474	1.004	525		Mean	0.039	0.033	0.468	0.044	418
	1	1.002	1.020	0.438	1.010	553		1	0.063	0.031	0.462	0.044	376
US-006	2	1.016	1.026	0.465	1.011	540	US-006	2	0.047	0.031	0.466	0.048	396
03-000	3	1.017	1.017	0.477	1.008	529	US-000	3	0.066	0.031	0.461	0.069	373
	Mean	1.012	1.021	0.460	1.010	541		Mean	0.058	0.031	0.463	0.054	382

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 : Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 560 nm A440(+) : Absorbance after light exposure at 440 nm A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α A : Mean (Blank after exposure) : Mean (Blank after exposure) В В

Laboratory :

Chemical Name : Qunine HCl

			Singlet oxy	gen		_		•	•	Superoxide	anion	•	•
Experimental	Run# -	A440		A440((+)	Results*1	Experimental	Run# -	A560	(-)	A560((+)	Results*2
No.	Kuii# -	Test Chemical	Blank	Test Chemical	Blank	- Results	No.	Kull# -	Test Chemical	Blank	Test Chemical	Blank	Results
	1	1.017	1.006	0.439	0.991	567		1	0.062	0.035	0.467	0.046	390
US-007	2	1.015	1.015	0.462	1.005	541	US-007	2	0.040	0.034	0.458	0.054	403
03-007	3	1.031	1.010	0.478	1.002	542	03-007	3	0.062	0.033	0.455	0.049	378
	Mean	1.021	1.010	0.460	0.999	550		Mean	0.055	0.034	0.460	0.049	390
	1	0.998	1.008	0.430	0.991	554		1	0.037	0.033	0.458	0.039	414
US-023	2	1.005	1.024	0.458	1.013	533	US-023	2	0.033	0.049	0.451	0.044	411
03-023	3	1.003	1.022	0.472	1.008	517	03-023	3	0.039	0.029	0.463	0.051	418
	Mean	1.002	1.018	0.453	1.004	535		Mean	0.036	0.037	0.457	0.044	414
	1	1.001	1.014	0.411	1.003	576		1	0.038	0.030	0.464	0.045	410
US-024	2	1.011	1.023	0.439	1.009	558	US-024	2	0.033	0.040	0.477	0.052	428
03-024	3	1.013	1.023	0.452	1.006	546	03-024	3	0.038	0.029	0.466	0.051	412
	Mean	1.008	1.020	0.434	1.006	560		Mean	0.036	0.033	0.469	0.049	417
	1	0.992	0.990	0.411	0.969	559		1	0.039	0.029	0.469	0.046	409
US-025	2	1.012	1.013	0.439	0.988	551	US-025	2	0.034	0.047	0.457	0.047	402
08-023	3	1.006	1.011	0.455	0.993	530	03-023	3	0.037	0.030	0.473	0.073	415
	Mean	1.003	1.005	0.435	0.983	547		Mean	0.037	0.035	0.466	0.056	409
	1	0.988	0.973	0.410	0.965	570		1	0.036	0.032	0.470	0.040	422
US-026	2	0.987	0.982	0.433	0.977	546	US-026	2	0.033	0.038	0.473	0.049	428
US-026	3	0.994	0.986	0.440	0.976	546	US-026	3	0.039	0.029	0.630	0.046	579
	Mean	0.990	0.981	0.427	0.973	554		Mean	0.036	0.033	0.524	0.045	476
	1	0.967	0.970	0.375	0.965	584		1	0.058	0.033	0.466	0.040	395
US-027	2	0.997	0.979	0.417	0.970	572	US-027	2	0.041	0.030	0.468	0.047	413
03-027	3	1.008	0.978	0.431	0.969	569	03-02/	3	0.061	0.029	0.465	0.046	391
	Mean	0.991	0.976	0.408	0.968	575		Mean	0.053	0.030	0.466	0.044	400

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) A A : Mean (Blank after exposure) В : Mean (Blank after exposure) В

Laboratory

В

Chemical Name Qunine HCl

•			Singlet oxy	/gen	•			•		Superoxide	anion	•	•
Experimental	Run# -	A440		A440	(+)	Results*1	Experimental	Run# -	A560	(-)	A560((+)	- Results*2
No.	Kull# -	Test Chemical	Blank	Test Chemical	Blank	- Results	No.	Kuii#	Test Chemical	Blank	Test Chemical	Blank	- Results
	1	0.962	0.980	0.397	0.971	554		1	0.052	0.029	0.469	0.051	391
US-028	2	0.977	0.988	0.428	0.977	538	US-028	2	0.041	0.030	0.465	0.053	399
03-028	3	0.974	0.995	0.448	0.983	515	03-028	3	0.063	0.028	0.477	0.061	389
	Mean	0.971	0.988	0.424	0.977	536		Mean	0.052	0.029	0.471	0.055	393
	1	0.947	0.973	0.370	0.960	567		1	0.040	0.030	0.497	0.038	449
US-029	2	0.988	0.986	0.413	0.979	565	US-029	2	0.036	0.044	0.506	0.044	461
08-029	3	0.990	0.987	0.429	0.978	551	08-029	3	0.041	0.029	0.511	0.047	462
	Mean	0.975	0.982	0.404	0.972	561		Mean	0.039	0.034	0.505	0.043	457
	1	0.978	0.997	0.422	1.002	556		1	0.045	0.029	0.474	0.047	408
US-030	2	0.985	1.003	0.444	0.996	542	US-030	2	0.034	0.043	0.462	0.051	407
08-030	3	0.982	1.001	0.455	1.005	528	08-030	3	0.039	0.030	0.463	0.066	403
	Mean	0.982	1.000	0.441	1.001	542		Mean	0.039	0.034	0.466	0.055	406
	1	0.976	0.986	0.416	0.973	551		1	0.042	0.029	0.449	0.042	394
US-031	2	0.987	0.985	0.442	0.979	535	LIC 021	2	0.035	0.042	0.462	0.046	414
08-031	3	0.991	0.995	0.455	0.985	525	US-031	3	0.041	0.029	0.459	0.049	405
	Mean	0.984	0.989	0.438	0.979	537		Mean	0.039	0.033	0.457	0.046	404
	1	0.964	0.987	0.413	0.976	539		1	0.037	0.028	0.468	0.045	411
US-032	2	0.987	0.988	0.442	0.975	533	US-032	2	0.035	0.045	0.465	0.045	410
08-032	3	0.994	1.007	0.462	0.995	520	08-032	3	0.038	0.028	0.467	0.072	409
	Mean	0.982	0.994	0.439	0.982	531		Mean	0.037	0.034	0.467	0.054	410
	1	0.971	0.982	0.423	0.972	536		1	0.061	0.033	0.459	0.041	379
US-033	2	0.979	0.989	0.447	0.975	520	US-033	2	0.041	0.034	0.466	0.051	405
03-033	3	0.993	0.987	0.457	0.975	524	03-033	3	0.064	0.028	0.482	0.064	398
	Mean	0.981	0.986	0.442	0.974	527		Mean	0.055	0.032	0.469	0.052	394

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) A A : Mean (Blank after exposure) В : Mean (Blank after exposure)

Laboratory :

Chemical Name : Qunine HCl

			Singlet oxy	/gen						Superoxide	anion		
Experimental	Run#	A440	(-)	A440((+)	D14-*1	Experimental	Run#	A560	(-)	A560((+)	D14-*2
No.	Kuii#	Test Chemical	Blank	Test Chemical	Blank	— Results 1	No.	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}
	1	0.964	0.974	0.399	0.965	556		1	0.037	0.036	0.468	0.049	407
US-034	2	0.979	1.001	0.422	0.992	548	US-034	2	0.033	0.042	0.449	0.045	392
05-034	3	0.985	0.994	0.451	0.985	525	05-034	3	0.038	0.029	0.454	0.085	392
	Mean	0.976	0.990	0.424	0.981	543		Mean	0.036	0.036	0.457	0.060	397
	1	0.984	0.982	0.424	0.975	552		1	0.058	0.034	0.461	0.045	380
110 025	2	0.985	0.985	0.449	0.974	527	110 025	2	0.039	0.030	0.485	0.048	424
US-035	3	0.993	0.985	0.459	0.976	525	US-035	3	0.059	0.028	0.459	0.066	378
	Mean	0.987	0.984	0.444	0.975	535		Mean	0.052	0.031	0.468	0.053	394
	1	0.984	0.977	0.414	0.965	560		1	0.058	0.028	0.436	0.043	354
US-036	2	0.978	0.990	0.441	0.984	527	US-036	2	0.038	0.032	0.460	0.048	398
08-030	3	0.986	0.988	0.450	0.977	526	08-030	3	0.069	0.029	0.479	0.072	386
	Mean	0.983	0.985	0.435	0.975	538		Mean	0.055	0.030	0.459	0.054	379
Mean for all	assays	-	-	-	-	541	Mean for all	assays	-	-	-	-	398
SD for all as	ssays	-	-	-	-	14	SD for all a	ssays	-	-	-	-	36
CV for all a	ssays	-	_	-	-	2.6	CV for all a	ssays	-	-	-	-	9.0

*1 : decrease of A440 $x10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 : Absorbance before light exposure at 560 nm A560(-) A440(+) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α : Mean (Blank after exposure) В В : Mean (Blank after exposure)

Laboratory :

Chemical Name : Sulisobenzone

			Singlet oxy	/gen						Superoxide	anion		
Experimental	Run#	A440	(-)	A440((+)	Results*1	Experimental	Run#	A560	(-)	A560((+)	Results*2
No.	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results	No.	Kun#	Test Chemical	Blank	Test Chemical	Blank	- Results
	1	1.015	1.014	1.006	1.006	-2		1	0.044	0.033	0.044	0.046	-14
US-001	2	1.020	1.028	1.014	1.014	-5	US-001	2	0.043	0.046	0.045	0.053	-12
03-001	3	1.009	1.029	1.002	1.020	-4	03-001	3	0.041	0.034	0.044	0.056	-12
	Mean	1.015	1.024	1.007	1.013	-4		Mean	0.043	0.038	0.044	0.052	-13
•	1	1.069	1.017	1.058	1.007	2	•	1	0.044	0.031	0.045	0.038	-6
US-002	2	1.051	1.028	1.037	1.021	5	US-002	2	0.042	0.043	0.045	0.041	-4
03-002	3	1.062	1.031	1.048	1.020	5	03-002	3	0.044	0.030	0.045	0.048	-6
	Mean	1.061	1.025	1.048	1.016	4		Mean	0.043	0.035	0.045	0.042	-5
•	1	1.037	1.011	1.012	1.001	15	•	1	0.045	0.029	0.044	0.049	-24
US-003	2	1.044	1.028	1.021	1.017	14	US-003	2	0.042	0.044	0.046	0.052	-19
03-003	3	1.049	1.024	1.021	1.016	18	03-003	3	0.046	0.030	0.045	0.070	-24
	Mean	1.043	1.021	1.018	1.011	16		Mean	0.044	0.034	0.045	0.057	-22
	1	1.016	0.998	1.005	0.987	1		1	0.038	0.029	0.056	0.046	-5
US-004	2	1.042	1.027	1.027	1.019	5	US-004	2	0.039	0.029	0.059	0.059	-4
03-004	3	1.050	1.021	1.036	1.010	4	03-004	3	0.039	0.029	0.058	0.054	-5
	Mean	1.036	1.015	1.023	1.005	3		Mean	0.039	0.029	0.058	0.053	-5
	1	1.029	1.015	1.015	1.004	3		1	0.048	0.029	0.047	0.043	-11
US-005	2	1.026	1.012	1.012	1.002	3	US-005	2	0.042	0.043	0.044	0.044	-8
03-003	3	1.041	1.016	1.028	1.007	2	03-003	3	0.045	0.029	0.046	0.046	-10
	Mean	1.032	1.015	1.018	1.004	3		Mean	0.045	0.033	0.046	0.044	-10
	1	1.027	1.020	1.001	1.010	15		1	0.042	0.031	0.043	0.044	-22
US-006	2	1.035	1.026	1.013	1.011	11	US-006	2	0.041	0.031	0.044	0.048	-21
03-000	3	1.042	1.017	1.015	1.008	16	03-000	3	0.043	0.031	0.044	0.069	-22
	Mean	1.035	1.021	1.010	1.010	14		Mean	0.042	0.031	0.043	0.054	-22

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 : Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) A440(+) : Absorbance after light exposure at 440 nm A560(+) : Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α A : Mean (Blank after exposure) : Mean (Blank after exposure) В В

Laboratory

Chemical Name Sulisobenzone

			Singlet oxy	gen						Superoxide	anion		
Experimental	Run# -	A440		A440((+)	Results*1	Experimental	Run# -	A560	(-)	A560((+)	Results*2
No.		Test Chemical	Blank	Test Chemical	Blank	Results	No.	Kuli# -	Test Chemical	Blank	Test Chemical	Blank	Results
	1	1.039	1.006	1.026	0.991	2		1	0.041	0.035	0.045	0.046	-11
US-007	2	1.027	1.015	1.013	1.005	3	US-007	2	0.040	0.034	0.046	0.054	-10
03-007	3	1.030	1.010	1.017	1.002	2	03-007	3	0.041	0.033	0.045	0.049	-11
	Mean	1.032	1.010	1.019	0.999	2		Mean	0.041	0.034	0.045	0.049	-11
	1	1.021	1.008	1.003	0.991	4		1	0.042	0.033	0.048	0.039	-1
US-023	2	1.028	1.024	1.012	1.013	2	US-023	2	0.041	0.049	0.043	0.044	-5
03-023	3	1.030	1.022	1.012	1.008	4	03-023	3	0.041	0.029	0.043	0.051	-6
	Mean	1.026	1.018	1.009	1.004	3		Mean	0.041	0.037	0.045	0.044	-4
	1	1.024	1.014	1.003	1.003	8		1	0.045	0.030	0.046	0.045	-15
US-024	2	1.024	1.023	1.008	1.009	2	US-024	2	0.042	0.040	0.046	0.052	-12
03-024	3	1.038	1.023	1.004	1.006	21	03-024	3	0.047	0.029	0.047	0.051	-15
	Mean	1.029	1.020	1.005	1.006	10		Mean	0.044	0.033	0.046	0.049	-14
	1	1.018	0.990	0.987	0.969	9		1	0.041	0.029	0.042	0.046	-20
US-025	2	1.022	1.013	0.996	0.988	4	US-025	2	0.040	0.047	0.043	0.047	-18
08-023	3	1.022	1.011	0.993	0.993	6	08-023	3	0.043	0.030	0.043	0.073	-21
	Mean	1.020	1.005	0.992	0.983	6		Mean	0.041	0.035	0.043	0.056	-20
	1	0.988	0.973	0.998	0.965	-18		1	0.041	0.032	0.042	0.040	-11
US-026	2	1.003	0.982	1.001	0.977	-6	US-026	2	0.041	0.038	0.043	0.049	-10
US-026	3	1.005	0.986	1.018	0.976	-20	US-026	3	0.044	0.029	0.041	0.046	-15
	Mean	0.999	0.981	1.005	0.973	-15		Mean	0.042	0.033	0.042	0.045	-12
	1	0.973	0.970	0.963	0.965	3		1	0.037	0.033	0.044	0.040	-7
US-027	2	0.992	0.979	0.973	0.970	11	US-027	2	0.040	0.030	0.043	0.047	-10
03-027	3	0.996	0.978	0.985	0.969	3	03-02/	3	0.038	0.029	0.044	0.046	-8
	Mean	0.987	0.976	0.973	0.968	6		Mean	0.038	0.030	0.044	0.044	-8

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-)

: Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) A

A : Mean (Blank after exposure) В : Mean (Blank after exposure) В

Laboratory : 1

В

Chemical Name : Sulisobenzone

			Singlet oxy	gen		_				Superoxide	anion		
Experimental	Run#	A440	(-)	A440((+)	Results*1	Experimental	Run#	A560	(-)	A560((+)	Results*2
No.	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results	No.	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.994	0.980	0.968	0.971	15		1	0.040	0.029	0.042	0.051	-24
US-028	2	1.000	0.988	0.980	0.977	10	US-028	2	0.040	0.030	0.042	0.053	-24
03-028	3	1.003	0.995	0.976	0.983	16	03-026	3	0.037	0.028	0.042	0.061	-22
	Mean	0.999	0.988	0.975	0.977	14		Mean	0.039	0.029	0.042	0.055	-23
	1	0.984	0.973	0.961	0.960	13		1	0.044	0.030	0.040	0.038	-12
US-029	2	0.986	0.986	0.971	0.979	5	US-029	2	0.043	0.044	0.042	0.044	-9
03-029	3	1.003	0.987	0.977	0.978	16	03-029	3	0.043	0.029	0.041	0.047	-11
	Mean	0.991	0.982	0.970	0.972	11		Mean	0.043	0.034	0.041	0.043	-11
	1	0.990	0.997	0.983	1.002	8	•	1	0.039	0.029	0.042	0.047	-18
US-030	2	0.998	1.003	0.986	0.996	13	US-030	2	0.040	0.043	0.043	0.051	-18
08-030	3	1.001	1.001	0.994	1.005	7	08-030	3	0.042	0.030	0.043	0.066	-20
	Mean	0.996	1.000	0.988	1.001	9		Mean	0.040	0.034	0.043	0.055	-19
	1	1.012	0.986	1.006	0.973	-4		1	0.045	0.029	0.042	0.042	-16
US-031	2	1.008	0.985	0.999	0.979	-1	US-031	2	0.039	0.042	0.043	0.046	-9
03-031	3	1.017	0.995	1.005	0.985	2	03-031	3	0.045	0.029	0.044	0.049	-14
	Mean	1.012	0.989	1.003	0.979	-1		Mean	0.043	0.033	0.043	0.046	-13
	1	0.978	0.987	0.952	0.976	14		1	0.041	0.028	0.043	0.045	-17
US-032	2	0.992	0.988	0.973	0.975	7	US-032	2	0.040	0.045	0.043	0.045	-17
03-032	3	1.002	1.007	0.975	0.995	15	08-032	3	0.042	0.028	0.044	0.072	-18
	Mean	0.990	0.994	0.967	0.982	12		Mean	0.041	0.034	0.043	0.054	-17
	1	0.977	0.982	0.962	0.972	3		1	0.040	0.033	0.041	0.041	-18
110 022	2	0.995	0.989	0.977	0.975	6	110 022	2	0.039	0.034	0.041	0.051	-18
US-033	3	0.998	0.987	0.983	0.975	3	US-033	3	0.041	0.028	0.041	0.064	-20
	Mean	0.990	0.986	0.974	0.974	4		Mean	0.040	0.032	0.041	0.052	-19

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 A440(-) : Absorbance before light exposure at 440 nm A440(+) : Absorbance after light exposure at 440 nm A : Mean (Blank before light exposure)

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 *3 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 *4 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 *4 : Absorbance before light exposure at 560 nm A : Mean (Blank before light exposure)

: Mean (Blank after exposure) B : Mean (Blank after exposure)

Laboratory : 1

Chemical Name : Sulisobenzone

			Singlet oxy	gen						Superoxide	anion		
Experimental	Run#	A440	(-)	A440((+)	Results*1	Experimental	Run#	A560	(-)	A560((+)	D14-*2
No.	Kull#	Test Chemical	Blank	Test Chemical	Blank	- Results	No.	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results*2
	1	0.991	0.974	0.982	0.965	0		1	0.041	0.036	0.041	0.049	-24
US-034	2	1.001	1.001	0.992	0.992	1	US-034	2	0.041	0.042	0.042	0.045	-23
08-034	3	1.001	0.994	0.993	0.985	-2	08-034	3	0.042	0.029	0.041	0.085	-25
	Mean	0.998	0.990	0.989	0.981	0		Mean	0.041	0.036	0.041	0.060	-24
	1	0.982	0.982	0.974	0.975	-1		1	0.043	0.034	0.041	0.045	-24
110 025	2	0.988	0.985	0.979	0.974	0	US-035	2	0.042	0.030	0.043	0.048	-21
US-035	3	0.996	0.985	0.985	0.976	2	08-033	3	0.044	0.028	0.042	0.066	-24
	Mean	0.989	0.984	0.979	0.975	0		Mean	0.043	0.031	0.042	0.053	-23
	1	0.984	0.977	0.975	0.965	-1		1	0.041	0.028	0.042	0.043	-23
US-036	2	0.995	0.990	0.987	0.984	-2	US-036	2	0.040	0.032	0.043	0.048	-22
08-036	3	0.997	0.988	0.989	0.977	-3	08-036	3	0.040	0.029	0.042	0.072	-22
	Mean	0.992	0.985	0.984	0.975	-2		Mean	0.040	0.030	0.042	0.054	-22
Mean for all	assays	-	-	-	-	5	Mean for all	assays	-	-	-	-	-15
SD for all as	says	-	-	-	-	7	SD for all as	ssays	=	-	-	-	7
CV for all a	ssays	-	-	-	-	-	CV for all a	ssays	-	-	-	-	-

Laboratory : 2

Chemical Name : Qunine HCl

			Singlet oxy	gen						Superoxide	anion		
Experimental	Run# -	A440		A440((+)	Results*1	Experimental	Run# -	A560	(-)	A560((+)	Results*2
No.	Kull# -	Γest Chemical	Blank	Test Chemical	Blank	Results	No.	Kuii# -	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.940	0.955	0.509	0.948	424		1	0.031	0.033	0.320	0.043	278
FDSC-01	2	0.959	0.963	0.530	0.956	422	FDSC-01	2	0.032	0.037	0.344	0.050	301
TDSC-01	3	0.963	0.967	0.539	0.961	417	rbsc-01	3	0.033	0.033	0.352	0.042	308
	Mean	0.954	0.962	0.526	0.955	421		Mean	0.032	0.034	0.339	0.045	296
	1	0.991	0.964	0.479	0.953	502		1	0.033	0.032	0.282	0.041	230
FDSC-02	2	0.996	0.971	0.507	0.964	479	FDSC-02	2	0.032	0.034	0.300	0.041	249
TD3C-02	3	0.999	0.978	0.510	0.965	479	FD3C-02	3	0.033	0.038	0.305	0.081	253
	Mean	0.995	0.971	0.499	0.961	487		Mean	0.033	0.035	0.296	0.054	244
	1	0.954	0.966	0.516	0.962	435		1	0.032	0.033	0.351	0.050	302
FDSC-03	2	0.954	0.970	0.527	0.968	424	FDSC-03	2	0.032	0.033	0.340	0.050	291
FDSC-03	3	0.965	0.974	0.537	0.970	425	FDSC-03	3	0.034	0.035	0.363	0.053	312
	Mean	0.958	0.970	0.527	0.967	428		Mean	0.033	0.034	0.351	0.051	302
	1	0.960	0.972	0.511	0.963	439		1	0.032	0.032	0.346	0.050	297
FDSC-04	2	0.970	0.970	0.526	0.959	434	FDSC-04	2	0.033	0.032	0.346	0.049	296
FDSC-04	3	0.961	0.975	0.526	0.963	425	FDSC-04	3	0.034	0.033	0.343	0.049	292
	Mean	0.964	0.972	0.521	0.962	433		Mean	0.033	0.032	0.345	0.049	295
	1	0.966	0.970	0.533	0.966	432		1	0.032	0.032	0.321	0.048	273
FDSC-05	2	0.963	0.966	0.538	0.973	424	FDSC-05	2	0.033	0.032	0.309	0.051	260
FDSC-03	3	0.961	0.975	0.539	0.968	421	FDSC-03	3	0.034	0.032	0.329	0.046	279
	Mean	0.963	0.970	0.537	0.969	426		Mean	0.033	0.032	0.320	0.048	271
	1	0.975	0.982	0.530	0.972	436		1	0.032	0.033	0.357	0.052	307
FDSC-06	2	0.981	0.977	0.544	0.965	428	FDSC-06	2	0.033	0.034	0.355	0.047	304
FD3C-00	3	0.975	0.982	0.547	0.976	419	FD3C-00	3	0.032	0.033	0.357	0.055	307
	Mean	0.977	0.980	0.540	0.971	428		Mean	0.032	0.033	0.356	0.051	306

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 $x10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) A A : Mean (Blank after exposure) : Mean (Blank after exposure) В В

Laboratory : 2

Chemical Name : Qunine HCl

	•		Singlet oxy	gen						Superoxide	anion		
Experimental	Run# -	A440		A440((+)	Results*1	Experimental	Run# -	A560	(-)	A560((+)	Results*2
No.	Kull# -	Test Chemical	Blank	Test Chemical	Blank	- Results	No.	Kull# -	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.963	0.973	0.520	0.964	438		1	0.032	0.032	0.296	0.048	248
FDSC-07	2	0.984	0.971	0.545	0.967	434	FDSC-07	2	0.032	0.032	0.283	0.049	235
FDSC-07	3	0.970	0.978	0.538	0.976	427	FDSC-07	3	0.032	0.033	0.295	0.047	247
	Mean	0.972	0.974	0.534	0.969	433		Mean	0.032	0.032	0.291	0.048	243
	1	0.977	0.987	0.517	0.980	453		1	0.031	0.032	0.358	0.046	314
EDGC 00	2	0.992	0.989	0.541	0.982	444	EDGC 00	2	0.032	0.032	0.325	0.048	280
FDSC-08	3	0.989	0.996	0.541	0.990	441	FDSC-08	3	0.033	0.033	0.333	0.042	287
	Mean	0.986	0.991	0.533	0.984	446		Mean	0.032	0.032	0.339	0.045	294
	1	0.981	0.984	0.532	0.975	443		1	0.032	0.032	0.329	0.052	274
EDGG 00	2	0.982	0.984	0.536	0.980	440	EDGG 00	2	0.032	0.032	0.318	0.057	263
FDSC-09	3	0.986	0.994	0.545	0.987	435	FDSC-09	3	0.032	0.032	0.342	0.055	287
	Mean	0.983	0.987	0.538	0.981	439		Mean	0.032	0.032	0.330	0.055	275
	1	0.976	0.982	0.519	0.976	448		1	0.032	0.032	0.334	0.047	283
EDGC 10	2	0.985	0.992	0.534	0.975	442	FDCC 10	2	0.032	0.032	0.329	0.053	278
FDSC-10	3	0.982	0.987	0.537	0.984	436	FDSC-10	3	0.032	0.034	0.351	0.055	300
	Mean	0.981	0.987	0.530	0.978	442		Mean	0.032	0.033	0.338	0.052	287
	1	0.976	0.977	0.516	0.965	452		1	0.037	0.031	0.312	0.049	256
EDGG 11	2	0.977	0.972	0.533	0.967	436	EDGC 11	2	0.032	0.032	0.313	0.055	262
FDSC-11	3	0.978	0.979	0.531	0.971	439	FDSC-11	3	0.033	0.034	0.325	0.050	273
	Mean	0.977	0.976	0.527	0.968	442		Mean	0.034	0.032	0.317	0.051	264
	1	0.959	0.967	0.513	0.961	439		1	0.033	0.033	0.340	0.049	292
EDGC 12	2	0.969	0.962	0.530	0.954	432	EDGC 12	2	0.033	0.035	0.337	0.050	289
FDSC-12	3	0.957	0.967	0.528	0.959	422	FDSC-12	3	0.034	0.033	0.338	0.047	289
	Mean	0.962	0.965	0.524	0.958	431		Mean	0.033	0.034	0.338	0.049	290

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) A A : Mean (Blank after exposure) В : Mean (Blank after exposure) В

Laboratory : 2

В

Chemical Name : Qunine HCl

			Singlet oxy	gen				•		Superoxide	anion		
Experimental	Run# -	A440		A440((+)	Results*1	Experimental	Run# -	A560	(-)	A560((+)	D14-*2
No.	Kun# -	Test Chemical	Blank	Test Chemical	Blank	Results	No.	Kun# -	Test Chemical	Blank	Test Chemical	Blank	Results*2
	1	0.966	0.970	0.542	0.970	419		1	0.031	0.034	0.349	0.043	309
FDSC-13	2	0.975	0.970	0.539	0.962	431	FDSC-13	2	0.033	0.034	0.333	0.043	291
FDSC-13	3	0.963	0.972	0.529	0.965	429	FDSC-13	3	0.033	0.033	0.369	0.044	327
	Mean	0.968	0.971	0.537	0.966	426		Mean	0.032	0.034	0.350	0.043	309
	1	0.958	0.971	0.511	0.960	437		1	0.032	0.032	0.367	0.044	322
FD9C 14	2	0.967	0.968	0.526	0.959	431	FDCC 14	2	0.033	0.033	0.362	0.050	316
FDSC-14	3	0.969	0.974	0.530	0.963	429	FDSC-14	3	0.032	0.033	0.371	0.045	326
	Mean	0.965	0.971	0.522	0.961	432		Mean	0.032	0.033	0.367	0.046	321
	1	0.975	0.974	0.527	0.967	443		1	0.031	0.033	0.351	0.054	305
EDGC 15	2	0.979	0.975	0.541	0.971	433	FDGG 15	2	0.032	0.032	0.327	0.048	280
FDSC-15	3	0.981	0.982	0.543	0.977	433	FDSC-15	3	0.034	0.035	0.340	0.043	291
	Mean	0.978	0.977	0.537	0.972	436		Mean	0.032	0.033	0.339	0.048	292
	1	0.971	0.986	0.512	0.996	459		1	0.031	0.031	0.358	0.041	316
EDGC 16	2	0.978	0.982	0.530	0.980	448	FDCC 16	2	0.032	0.032	0.334	0.044	291
FDSC-16	3	0.984	0.993	0.539	0.986	445	FDSC-16	3	0.033	0.033	0.364	0.043	320
	Mean	0.978	0.987	0.527	0.987	451		Mean	0.032	0.032	0.352	0.043	309
	1	0.981	0.981	0.519	0.977	459		1	0.032	0.032	0.344	0.053	294
EDGC 17	2	0.990	0.989	0.538	0.984	449	FDGG 17	2	0.032	0.033	0.356	0.052	306
FDSC-17	3	0.990	0.995	0.541	0.993	446	FDSC-17	3	0.032	0.032	0.372	0.046	322
	Mean	0.987	0.988	0.533	0.985	451		Mean	0.032	0.032	0.357	0.050	307
	1	0.948	0.960	0.503	0.955	440		1	0.032	0.032	0.324	0.043	279
EDGC 10	2	0.953	0.955	0.520	0.951	428	FDCC 10	2	0.032	0.032	0.335	0.047	290
FDSC-18	3	0.953	0.966	0.520	0.958	428	FDSC-18	3	0.036	0.033	0.341	0.045	292
	Mean	0.951	0.960	0.514	0.955	432		Mean	0.033	0.032	0.333	0.045	287

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 A440(-) : Absorbance before light exposure at 440 nm A440(+) : Absorbance after light exposure at 440 nm A : Mean (Blank before light exposure)

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 *3 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 *4 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 *4 : Absorbance before light exposure at 560 nm A : Mean (Blank before light exposure)

: Mean (Blank before light exposure)

: Mean (Blank after exposure)

B : Mean (Blank after exposure)

Laboratory : 2

Chemical Name : Qunine HCl

			Singlet oxy	gen						Superoxide	anion		
Experimental	Run# -	A440	(-)	A440((+)	Results*1	Experimental	Run#	A560	(-)	A5600	(+)	Results*2
No.	Kuii# -	Test Chemical	Blank	Test Chemical	Blank	Results	No.	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.979	0.986	0.527	0.990	448		1	0.031	0.033	0.301	0.049	252
FDSC-19	2	0.976	0.981	0.538	0.975	434	FDSC-19	2	0.032	0.032	0.293	0.054	243
TD3C-19	3	0.976	0.991	0.542	0.982	430	TD3C-19	3	0.033	0.033	0.319	0.050	268
	Mean	0.977	0.986	0.536	0.982	437		Mean	0.032	0.033	0.304	0.051	254
	1	0.965	0.974	0.515	0.949	431		1	0.032	0.032	0.343	0.046	299
FDSC-20	2	0.976	0.972	0.534	0.954	423	FDSC-20	2	0.032	0.032	0.348	0.045	304
FDSC-20	3	0.972	0.980	0.536	0.966	417	FDSC-20	3	0.034	0.034	0.354	0.045	308
	Mean	0.971	0.975	0.528	0.956	424		Mean	0.033	0.033	0.348	0.045	304
	1	0.955	0.959	0.509	0.967	444		1	0.031	0.031	0.279	0.043	239
FDSC-21	2	0.959	0.958	0.524	0.953	433	FDSC-21	2	0.033	0.032	0.267	0.041	225
FDSC-21	3	0.957	0.963	0.528	0.955	427	FDSC-21	3	0.032	0.035	0.286	0.042	245
	Mean	0.957	0.960	0.520	0.958	435		Mean	0.032	0.033	0.277	0.042	236
	1	0.968	0.980	0.519	0.974	443		1	0.032	0.031	0.314	0.040	268
FDSC-22	2	0.973	0.982	0.538	0.974	429	FDSC-22	2	0.034	0.033	0.275	0.057	227
FDSC-22	3	0.977	0.991	0.544	0.986	427	FD3C-22	3	0.033	0.032	0.307	0.042	260
	Mean	0.973	0.984	0.534	0.978	433		Mean	0.033	0.032	0.299	0.046	252
	1	0.988	0.957	0.536	0.946	442		1	0.031	0.032	0.317	0.059	268
FDSC-23	2	0.995	0.960	0.552	0.947	433	FDSC-23	2	0.032	0.032	0.312	0.045	262
FDSC-23	3	0.995	0.965	0.557	0.959	428	FDSC-23	3	0.033	0.033	0.344	0.045	293
	Mean	0.993	0.961	0.548	0.951	434		Mean	0.032	0.032	0.324	0.050	274
	1	0.967	0.972	0.518	0.963	442		1	0.032	0.031	0.258	0.045	212
EDCC 24	2	0.968	0.970	0.528	0.963	433	EDSC 24	2	0.034	0.032	0.258	0.048	210
FDSC-24	3	0.965	0.977	0.530	0.973	428	FDSC-24	3	0.033	0.032	0.270	0.046	223
	Mean	0.967	0.973	0.525	0.966	434		Mean	0.033	0.032	0.262	0.046	215

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) A A : Mean (Blank after exposure) В : Mean (Blank after exposure) В

Laboratory : 2

Chemical Name : Qunine HCl

			Singlet oxy	/gen						Superoxide	anion		
Experimental	Run#	A440	(-)	A440(+)	Results*1	Experimental	Run#	A560	(-)	A560((+)	Results*2
No.	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results	No.	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.938	0.958	0.502	0.948	424		1	0.032	0.032	0.304	0.040	264
FDSC-25	2	0.945	0.952	0.514	0.949	419	FDSC-25	2	0.032	0.034	0.303	0.041	263
FDSC-23	3	0.943	0.951	0.517	0.928	414	FDSC-25	3	0.033	0.033	0.316	0.042	275
	Mean	0.942	0.954	0.511	0.942	419		Mean	0.032	0.033	0.308	0.041	267
	1	0.946	0.959	0.502	0.954	438		1	0.033	0.037	0.329	0.042	285
FDSC-26	2	0.960	0.955	0.519	0.949	435	FDSC-26	2	0.034	0.033	0.328	0.050	283
FDSC-20	3	0.955	0.964	0.523	0.956	426	FDSC-20	3	0.033	0.033	0.351	0.043	307
	Mean	0.954	0.959	0.515	0.953	433		Mean	0.033	0.034	0.336	0.045	292
Mean for all	assays	-	-	-	-	436	Mean for all	assays	-	-	-	-	280
SD for all a	ssays	-	-	-	-	13	SD for all as	says	-	-	-	-	27
CV for all a	ssays	-	-	=	-	3.0	CV for all as	ssays	=	-	=	-	9.6

Laboratory : 2

Chemical Name : Sulisobenzone

			Singlet oxy	gen						Superoxide	anion		
Experimental	Run#	A440	(-)	A440((+)	D14-*1	Experimental	Run#	A560	(-)	A560((+)	Results*2
No.	Kuli#	Test Chemical	Blank	Test Chemical	Blank	- Results*1	No.	Kuli#	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.959	0.955	0.949	0.948	3		1	0.038	0.033	0.039	0.043	-10
FDSC-01	2	0.974	0.963	0.966	0.956	1	FDSC-01	2	0.038	0.037	0.038	0.050	-11
1 DSC-01	3	0.976	0.967	0.971	0.961	-2	TDSC-01	3	0.037	0.033	0.043	0.042	-5
	Mean	0.970	0.962	0.962	0.955	1		Mean	0.038	0.034	0.040	0.045	-9
•	1	0.984	0.964	0.941	0.953	33		1	0.033	0.032	0.040	0.041	-12
FDSC-02	2	0.990	0.971	0.963	0.964	17	FDSC-02	2	0.033	0.034	0.040	0.041	-12
FD3C-02	3	0.998	0.978	0.966	0.965	22	TD3C-02	3	0.032	0.038	0.040	0.081	-11
	Mean	0.991	0.971	0.957	0.961	24		Mean	0.033	0.035	0.040	0.054	-12
•	1	0.968	0.966	0.962	0.962	3		1	0.038	0.033	0.039	0.050	-16
FDSC-03	2	0.977	0.970	0.976	0.968	-2	FDSC-03	2	0.037	0.033	0.039	0.050	-15
FDSC-03	3	0.976	0.974	0.972	0.970	1	FDSC-03	3	0.041	0.035	0.039	0.053	-19
	Mean	0.974	0.970	0.970	0.967	1		Mean	0.039	0.034	0.039	0.051	-17
	1	0.974	0.972	0.962	0.963	2		1	0.038	0.032	0.038	0.050	-17
FDSC-04	2	0.976	0.970	0.960	0.959	6	FDSC-04	2	0.037	0.032	0.038	0.049	-16
FDSC-04	3	0.975	0.975	0.963	0.963	2	FD3C-04	3	0.039	0.033	0.040	0.049	-16
	Mean	0.975	0.972	0.962	0.962	3		Mean	0.038	0.032	0.039	0.049	-16
	1	0.967	0.970	0.966	0.966	0		1	0.038	0.032	0.040	0.048	-14
FDSC-05	2	0.969	0.966	0.968	0.973	0	FDSC-05	2	0.037	0.032	0.039	0.051	-14
FDSC-03	3	0.968	0.975	0.963	0.968	4	FDSC-03	3	0.037	0.032	0.038	0.046	-15
	Mean	0.968	0.970	0.966	0.969	1		Mean	0.037	0.032	0.039	0.048	-14
	1	0.983	0.982	0.978	0.972	-4		1	0.038	0.033	0.039	0.052	-17
EDGC 06	2	0.982	0.977	0.972	0.965	1	EDCC 06	2	0.038	0.034	0.042	0.047	-14
FDSC-06	3	0.987	0.982	0.981	0.976	-3	FDSC-06	3	0.038	0.033	0.040	0.055	-16
	Mean	0.984	0.980	0.977	0.971	-2		Mean	0.038	0.033	0.040	0.051	-16

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 : Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 560 nm A440(+) : Absorbance after light exposure at 440 nm A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α A : Mean (Blank after exposure) : Mean (Blank after exposure) В В

2 Laboratory

В

Chemical Name Sulisobenzone

•	•		Singlet oxy	gen						Superoxide	anion		
Experimental	Run# -	A440		A440	(+)	Results*1	Experimental	Run# -	A560	(-)	A560((+)	Results*2
No.	Kull# -	Test Chemical	Blank	Test Chemical	Blank	- Results	No.	Kull# -	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.974	0.973	0.974	0.964	-5		1	0.038	0.032	0.039	0.048	-15
FDSC-07	2	0.979	0.971	0.972	0.967	2	FDSC-07	2	0.038	0.032	0.043	0.049	-11
FDSC-07	3	0.980	0.978	0.977	0.976	-2	FDSC-07	3	0.038	0.033	0.041	0.047	-13
	Mean	0.978	0.974	0.974	0.969	-2		Mean	0.038	0.032	0.041	0.048	-13
	1	0.991	0.987	0.985	0.980	-1		1	0.037	0.032	0.043	0.046	-7
FDSC-08	2	0.995	0.989	0.987	0.982	1	FDSC-08	2	0.038	0.032	0.041	0.048	-10
FD8C-08	3	1.003	0.996	0.995	0.990	1	FDSC-08	3	0.037	0.033	0.040	0.042	-10
	Mean	0.996	0.991	0.989	0.984	0		Mean	0.037	0.032	0.041	0.045	-9
	1	0.994	0.984	0.982	0.975	6		1	0.038	0.032	0.039	0.052	-22
FDSC-09	2	0.990	0.984	0.986	0.980	-2	FDSC-09	2	0.038	0.032	0.040	0.057	-21
FDSC-09	3	0.996	0.994	0.991	0.987	-1	FDSC-09	3	0.038	0.032	0.038	0.055	-23
	Mean	0.993	0.987	0.986	0.981	1		Mean	0.038	0.032	0.039	0.055	-22
	1	0.988	0.982	0.982	0.976	-3		1	0.039	0.032	0.039	0.047	-19
EDCC 10	2	0.990	0.992	0.985	0.975	-4	FDSC-10	2	0.037	0.032	0.039	0.053	-17
FDSC-10	3	0.995	0.987	0.994	0.984	-8	FDSC-10	3	0.039	0.034	0.040	0.055	-18
	Mean	0.991	0.987	0.987	0.978	-5		Mean	0.038	0.033	0.039	0.052	-18
	1	0.984	0.977	0.977	0.965	-1		1	0.037	0.031	0.039	0.049	-17
FDSC-11	2	0.983	0.972	0.976	0.967	-1	FDSC-11	2	0.037	0.032	0.038	0.055	-18
FDSC-11	3	0.985	0.979	0.975	0.971	2	FDSC-11	3	0.037	0.034	0.039	0.050	-17
	Mean	0.984	0.976	0.976	0.968	0		Mean	0.037	0.032	0.039	0.051	-17
	1	0.977	0.967	0.964	0.961	6		1	0.037	0.033	0.039	0.049	-13
FDSC-12	2	0.972	0.962	0.965	0.954	0	FDSC-12	2	0.037	0.035	0.039	0.050	-13
FD3C-12	3	0.975	0.967	0.968	0.959	0	FD8C-12	3	0.037	0.033	0.041	0.047	-11
	Mean	0.975	0.965	0.966	0.958	2		Mean	0.037	0.034	0.040	0.049	-12

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) A A : Mean (Blank after exposure) В : Mean (Blank after exposure)

Laboratory : 2

Chemical Name : Sulisobenzone

			Singlet oxy	/gen						Superoxide	anion		
Experimental	Run# -	A440		A440	(+)	Results*1	Experimental	Run# -	A560	(-)	A560((+)	Results*2
No.	Kull# -	Test Chemical	Blank	Test Chemical	Blank	Results	No.	Kull# -	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.969	0.970	0.971	0.970	-7		1	0.037	0.034	0.039	0.043	-7
FDSC-13	2	0.970	0.970	0.972	0.962	-7	FDSC-13	2	0.037	0.034	0.040	0.043	-6
FDSC-13	3	0.968	0.972	0.961	0.965	2	FDSC-13	3	0.037	0.033	0.039	0.044	-7
	Mean	0.969	0.971	0.968	0.966	-4		Mean	0.037	0.034	0.039	0.043	-7
	1	0.971	0.971	0.962	0.960	-1		1	0.037	0.032	0.040	0.044	-10
FDSC-14	2	0.974	0.968	0.969	0.959	-5	FDSC-14	2	0.037	0.033	0.039	0.050	-11
FDSC-14	3	0.982	0.974	0.973	0.963	-1	FDSC-14	3	0.040	0.033	0.040	0.045	-13
	Mean	0.976	0.971	0.968	0.961	-2		Mean	0.038	0.033	0.040	0.046	-11
	1	0.981	0.974	0.977	0.967	-1		1	0.039	0.033	0.040	0.054	-14
FDSC-15	2	0.985	0.975	0.981	0.971	-1	FDSC-15	2	0.037	0.032	0.040	0.048	-12
FDSC-13	3	0.987	0.982	0.983	0.977	-1	FDSC-13	3	0.038	0.035	0.039	0.043	-14
	Mean	0.984	0.977	0.980	0.972	-1		Mean	0.038	0.033	0.040	0.048	-13
	1	0.984	0.986	0.978	0.996	6		1	0.037	0.031	0.038	0.041	-10
FDSC-16	2	0.985	0.982	0.981	0.980	4	FDSC-16	2	0.037	0.032	0.038	0.044	-10
FDSC-10	3	0.989	0.993	0.983	0.986	6	FDSC-10	3	0.037	0.033	0.039	0.043	-9
	Mean	0.986	0.987	0.981	0.987	5		Mean	0.037	0.032	0.038	0.043	-10
	1	0.982	0.981	0.978	0.977	1		1	0.039	0.032	0.041	0.053	-16
FDSC-17	2	0.991	0.989	0.988	0.984	0	FDSC-17	2	0.037	0.033	0.040	0.052	-15
FDSC-17	3	0.995	0.995	0.989	0.993	3	FDSC-17	3	0.037	0.032	0.039	0.046	-16
	Mean	0.989	0.988	0.985	0.985	1		Mean	0.038	0.032	0.040	0.050	-16
	1	0.963	0.960	0.956	0.955	2		1	0.038	0.032	0.040	0.043	-11
FDSC-18	2	0.964	0.955	0.959	0.951	0	FDSC-18	2	0.038	0.032	0.040	0.047	-11
FDSC-18	3	0.968	0.966	0.961	0.958	2	FDSC-18	3	0.040	0.033	0.039	0.045	-14
	Mean	0.965	0.960	0.959	0.955	1		Mean	0.039	0.032	0.040	0.045	-12

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 : Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) A A : Mean (Blank after exposure) В : Mean (Blank after exposure) В

Laboratory : 2

Chemical Name : Sulisobenzone

•			Singlet oxy	gen				•	•	Superoxide	anion	•	
Experimental	Run# -	A440	(-)	A440((+)	Results*1	Experimental	Run# -	A560	(-)	A560((+)	Results*2
No.	Kull# -	Test Chemical	Blank	Test Chemical	Blank	- Results	No.	Kull# -	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.985	0.986	0.976	0.990	5		1	0.038	0.033	0.039	0.049	-17
FDSC-19	2	0.984	0.981	0.973	0.975	7	FDSC-19	2	0.038	0.032	0.039	0.054	-17
FDSC-19	3	0.980	0.991	0.973	0.982	3	FDSC-19	3	0.039	0.033	0.038	0.050	-19
	Mean	0.983	0.986	0.974	0.982	5		Mean	0.038	0.033	0.039	0.051	-18
	1	0.978	0.974	0.962	0.949	-3		1	0.038	0.032	0.040	0.046	-10
FDSC-20	2	0.983	0.972	0.972	0.954	-8	FDSC-20	2	0.037	0.032	0.040	0.045	-9
FDSC-20	3	0.988	0.980	0.980	0.966	-11	FDSC-20	3	0.039	0.034	0.038	0.045	-13
	Mean	0.983	0.975	0.971	0.956	-7		Mean	0.038	0.033	0.039	0.045	-11
	1	0.967	0.959	0.957	0.967	8		1	0.038	0.031	0.039	0.043	-8
FDSC-21	2	0.972	0.958	0.963	0.953	7	FDSC-21	2	0.037	0.032	0.039	0.041	-7
FDSC-21	3	0.966	0.963	0.959	0.955	5	FDSC-21	3	0.037	0.035	0.039	0.042	-7
	Mean	0.968	0.960	0.960	0.958	7		Mean	0.037	0.033	0.039	0.042	-7
	1	0.979	0.980	0.972	0.974	1		1	0.038	0.031	0.039	0.040	-13
EDGC 22	2	0.980	0.982	0.973	0.974	1	FDSC-22	2	0.037	0.033	0.039	0.057	-12
FDSC-22	3	0.988	0.991	0.977	0.986	5	FDSC-22	3	0.037	0.032	0.039	0.042	-12
	Mean	0.982	0.984	0.974	0.978	2		Mean	0.037	0.032	0.039	0.046	-12
	1	0.964	0.957	0.954	0.946	0		1	0.038	0.032	0.040	0.059	-16
FDSC-23	2	0.963	0.960	0.951	0.947	2	FDSC-23	2	0.038	0.032	0.039	0.045	-17
FDSC-23	3	0.966	0.965	0.956	0.959	0	FDSC-23	3	0.038	0.033	0.043	0.045	-13
	Mean	0.964	0.961	0.954	0.951	1		Mean	0.038	0.032	0.041	0.050	-15
	1	0.975	0.972	0.965	0.963	3		1	0.038	0.031	0.039	0.045	-13
FDSC-24	2	0.975	0.970	0.965	0.963	3	FDSC-24	2	0.038	0.032	0.040	0.048	-12
FD3C-24	3	0.976	0.977	0.969	0.973	0	FDSC-24	3	0.039	0.032	0.043	0.046	-10
	Mean	0.975	0.973	0.966	0.966	2		Mean	0.038	0.032	0.041	0.046	-12

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) A A : Mean (Blank after exposure) В : Mean (Blank after exposure) В

Laboratory : 2

Chemical Name : Sulisobenzone

			Singlet oxy	/gen						Superoxide	anion		
Experimental	Run#	A440	(-)	A440(+)	Results*1	Experimental	Run#	A560	(-)	A560((+)	D a sulta *2
No.	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results	No.	Kuii#	Test Chemical	Blank	Test Chemical	Blank	- Results ^{*2}
	1	0.962	0.958	0.951	0.948	-1		1	0.038	0.032	0.039	0.040	-7
FDSC-25	2	0.959	0.952	0.952	0.949	-5	FDSC-25	2	0.037	0.034	0.040	0.041	-5
FDSC-23	3	0.963	0.951	0.956	0.928	-5	FDSC-23	3	0.038	0.033	0.039	0.042	-7
	Mean	0.961	0.954	0.953	0.942	-4		Mean	0.038	0.033	0.039	0.041	-6
	1	0.963	0.959	0.959	0.954	-2		1	0.040	0.037	0.039	0.042	-12
FDSC-26	2	0.964	0.955	0.954	0.949	4	FDSC-26	2	0.037	0.033	0.040	0.050	-8
FDSC-26	3	0.966	0.964	0.961	0.956	-1	FDSC-20	3	0.039	0.033	0.038	0.043	-12
	Mean	0.964	0.959	0.958	0.953	0		Mean	0.039	0.034	0.039	0.045	-11
Mean for all	assays	-	-	-	-	1	Mean for all	assays	-	-	-	-	-13
SD for all a	ssays	-	-	-	-	6	SD for all as	ssays	-	-	-	-	4
CV for all a	ssays	-	-	-	-	-	CV for all as	ssays	-	-	-	-	-

Laboratory : 3

Chemical Name : Qunine HCl

			Singlet oxy	gen			-			Superoxide	anion		
Experimental	Run# -	A440		A440((+)	Results*1	Experimental	Run# -	A560	(-)	A560((+)	Results*2
No.		Test Chemical	Blank	Test Chemical	Blank	Results	No.	Kull# -	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.986	1.005	0.596	1.000	387		1	0.032	0.030	0.340	0.035	301
MT-001	2	0.990	1.009	0.612	1.005	376	MT-001	2	0.033	0.030	0.340	0.035	301
W11-001	3	0.987	1.010	0.624	1.012	361	W11-001	3	0.032	0.029	0.353	0.036	314
	Mean	0.988	1.008	0.611	1.006	375		Mean	0.032	0.029	0.344	0.036	305
	1	0.992	1.011	0.627	1.005	360		1	0.031	0.029	0.320	0.033	284
MT-002	2	0.995	1.016	0.633	1.011	357	MT-002	2	0.032	0.030	0.317	0.034	280
WH 1-002	3	0.989	1.018	0.639	1.013	345	WH 1-002	3	0.031	0.028	0.334	0.033	298
	Mean	0.992	1.015	0.633	1.010	354		Mean	0.031	0.029	0.324	0.034	287
	1							1	0.031	0.029	0.337	0.036	300
MT-003	2						MT-003	2	0.031	0.029	0.325	0.034	288
W11-003	3						W11-003	3	0.031	0.028	0.343	0.034	307
	Mean							Mean	0.031	0.029	0.335	0.035	298
	1	0.979	0.999	0.594	0.992	379		1	0.032	0.029	0.366	0.034	330
MT-004	2	0.982	1.003	0.605	0.997	370	MT-004	2	0.032	0.029	0.369	0.034	331
WH 1-004	3	0.979	1.001	0.608	0.996	364	WH 1-004	3	0.032	0.029	0.384	0.034	347
	Mean	0.980	1.001	0.602	0.995	371		Mean	0.032	0.029	0.373	0.034	336
	1	0.982	1.000	0.608	0.997	370		1	0.032	0.029	0.322	0.034	285
MT-005	2	0.981	1.003	0.617	1.000	360	MT-005	2	0.032	0.029	0.322	0.034	284
W11-003	3	0.977	1.002	0.621	0.998	352	W11-003	3	0.031	0.029	0.326	0.034	289
	Mean	0.980	1.002	0.615	0.998	361		Mean	0.032	0.029	0.323	0.034	286
	1	0.986	1.002	0.606	0.996	374		1	0.031	0.029	0.330	0.034	293
MT-006	2	0.987	1.006	0.616	0.999	365	MT-006	2	0.032	0.029	0.324	0.034	287
141 1 -000	3	0.982	1.007	0.617	1.001	360	1411-000	3	0.031	0.028	0.340	0.033	304
	Mean	0.985	1.005	0.613	0.999	366		Mean	0.031	0.029	0.331	0.034	295

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+) : Absorbance after light exposure at 560 nm : Absorbance after light exposure at 440 nm A560(+): Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after exposure) В : Mean (Blank after exposure)

The optical absorbance values were rounded to the third decimal place. If the calculated "results" are different from the numerical results in the raw data sheets by the number of significant digits in the data sheet and the appendices are different, the data in the raw data sheet is used in the appendices.

Laboratory : 3

Chemical Name : Qunine HCl

			Singlet oxy	/gen					<u> </u>	Superoxide	anion		
Experimental	Run# -	A440		A440	(+)	Results*1	Experimental	Run# -	A560	(-)	A560((+)	- Results*2
No.	Run# -	Test Chemical	Blank	Test Chemical	Blank	- Results	No.	Kun# -	Test Chemical	Blank	Test Chemical	Blank	- Results
	1	0.981	0.996	0.597	0.992	382		1	0.031	0.029	0.343	0.036	305
MT-007	2	0.984	1.002	0.607	0.998	374	MT-007	2	0.032	0.029	0.340	0.035	302
WH 1-00 /	3	0.978	1.000	0.606	0.997	369	WH 1 -00 /	3	0.031	0.028	0.348	0.034	311
	Mean	0.981	0.999	0.603	0.996	375		Mean	0.031	0.029	0.344	0.035	306
	1	0.994	1.010	0.597	0.995	382		1	0.033	0.031	0.335	0.035	297
MT-008	2	0.993	1.012	0.605	0.997	372	MT-008	2	0.033	0.031	0.340	0.036	301
WH 1-008	3	0.988	1.011	0.610	0.997	362	W11-008	3	0.032	0.030	0.348	0.035	311
	Mean	0.992	1.011	0.604	0.996	372		Mean	0.033	0.031	0.341	0.036	303
	1	0.976	0.994	0.603	0.989	369		1	0.031	0.029	0.334	0.034	298
MT-009	2	0.978	0.997	0.618	0.994	357	MT-009	2	0.032	0.029	0.331	0.035	295
WH 1-009	3	0.975	0.999	0.619	0.995	352	M11-009	3	0.031	0.028	0.345	0.034	309
	Mean	0.976	0.997	0.613	0.993	359		Mean	0.031	0.029	0.337	0.034	301
	1	0.983	0.998	0.617	0.994	362		1	0.031	0.029	0.324	0.034	288
MT-010	2	0.983	1.002	0.622	0.997	357	MT-010	2	0.031	0.029	0.324	0.035	287
W11-010	3	0.978	1.001	0.623	0.996	351	M11-010	3	0.031	0.028	0.326	0.034	290
	Mean	0.981	1.000	0.621	0.996	357		Mean	0.031	0.029	0.325	0.034	288
	1	0.982	0.998	0.618	0.993	359		1	0.032	0.030	0.318	0.034	280
MT 011	2	0.985	1.005	0.627	0.999	353	MT 011	2	0.032	0.029	0.318	0.035	280
MT-011	3	0.980	1.003	0.629	1.000	347	MT-011	3	0.031	0.028	0.327	0.035	290
	Mean	0.982	1.002	0.625	0.997	353		Mean	0.032	0.029	0.321	0.035	283
	1	0.974	0.992	0.607	0.989	363		1	0.032	0.030	0.317	0.034	280
MT 012	2	0.979	0.999	0.618	0.994	357	MT 012	2	0.033	0.029	0.315	0.035	277
MT-012	3	0.975	0.999	0.620	0.996	351	MT-012	3	0.031	0.029	0.320	0.034	283
	Mean	0.976	0.997	0.615	0.993	357		Mean	0.032	0.029	0.317	0.034	280

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 : Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) A Α В : Mean (Blank after exposure) В : Mean (Blank after exposure)

Laboratory : 3

Chemical Name : Qunine HCl

			Singlet oxy	gen						Superoxide	anion		
Experimental	Run# -	A440	(-)	A440((+)	Results*1	Experimental	Run#	A560	(-)	A560((+)	Results*2
No.	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results	No.	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.970	0.994	0.611	0.988	356		1	0.031	0.029	0.317	0.034	280
MT-013	2	0.973	0.995	0.618	0.991	351	MT-013	2	0.032	0.029	0.309	0.035	272
W11-013	3	0.971	0.995	0.619	0.990	348	W11-013	3	0.031	0.028	0.319	0.034	283
	Mean	0.971	0.994	0.616	0.990	352		Mean	0.031	0.029	0.315	0.034	278
	1	0.988	1.007	0.622	1.003	362		1	0.032	0.029	0.317	0.035	279
MT-014	2	0.991	1.012	0.632	1.008	355	MT-014	2	0.033	0.029	0.315	0.035	276
WH-014	3	0.986	1.010	0.634	1.009	348	W11-014	3	0.032	0.029	0.318	0.037	280
	Mean	0.988	1.010	0.629	1.006	355		Mean	0.032	0.029	0.317	0.035	278
	1	0.983	1.002	0.617	0.997	359		1	0.031	0.030	0.326	0.035	290
MT-015	2	0.989	1.007	0.626	1.004	355	MT-015	2	0.032	0.030	0.322	0.035	286
W11-013	3	0.985	1.006	0.629	0.995	349	W11-013	3	0.031	0.029	0.326	0.034	291
	Mean	0.986	1.005	0.624	0.998	354		Mean	0.031	0.030	0.325	0.034	289
	1	0.975	0.996	0.609	0.992	362		1	0.032	0.029	0.329	0.034	293
MT-016	2	0.981	0.988	0.619	0.985	358	MT-016	2	0.032	0.029	0.326	0.033	290
W11-010	3	0.969	0.989	0.616	0.984	349	W11-010	3	0.031	0.029	0.330	0.033	295
	Mean	0.975	0.991	0.615	0.987	356		Mean	0.032	0.029	0.328	0.033	293
	1	0.969	0.997	0.594	0.993	371		1	0.032	0.029	0.335	0.033	298
MT-018	2	0.976	0.992	0.607	0.987	365	MT-018	2	0.032	0.028	0.332	0.033	295
W11-018	3	0.961	0.990	0.603	0.987	354	W11-018	3	0.031	0.028	0.340	0.033	304
	Mean	0.969	0.993	0.601	0.989	363		Mean	0.032	0.028	0.336	0.033	299
	1	0.985	1.009	0.626	1.001	350		1	0.033	0.030	0.325	0.035	287
MT-019	2	0.990	1.002	0.633	0.992	348	MT-019	2	0.033	0.030	0.327	0.035	289
W11-019	3	0.978	1.003	0.630	0.994	339	W11-019	3	0.032	0.030	0.335	0.035	298
	Mean	0.984	1.005	0.630	0.996	346		Mean	0.033	0.030	0.329	0.035	291

A : Mean (Blank before light exposure)

B : Mean (Blank after exposure)

B : Mean (Blank after exposure)

B : Mean (Blank after exposure)

Laboratory : 3

Chemical Name : Qunine HCl

			Singlet oxy	gen						Superoxide	anion		
Experimental	Run#	A440	(-)	A440((+)	Results*1	Experimental	Run#	A560	(-)	A560((+)	Results*2
No.	Kull#	Test Chemical	Blank	Test Chemical	Blank	Results	No.	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.981	1.003	0.622	1.003	357		1	0.033	0.030	0.315	0.035	276
MT-020	2	0.986	1.000	0.638	0.998	346	MT-020	2	0.033	0.030	0.313	0.035	275
WH 1-020	3	0.974	0.999	0.633	0.997	339	WH 1-020	3	0.032	0.031	0.317	0.036	279
	Mean	0.980	1.001	0.631	0.999	347		Mean	0.033	0.030	0.315	0.036	277
	1	0.982	1.008	0.626	1.001	351		1	0.032	0.029	0.319	0.035	280
MT-021	2	0.989	1.004	0.638	1.000	346	MT-021	2	0.032	0.030	0.315	0.035	277
WH 1-021	3	0.979	1.004	0.633	1.001	340	M11-021	3	0.032	0.029	0.322	0.035	284
	Mean	0.983	1.005	0.632	1.000	346		Mean	0.032	0.029	0.319	0.035	280
	1	0.976	1.001	0.619	0.994	351		1	0.032	0.030	0.313	0.034	276
MT-022	2	0.981	1.000	0.627	0.992	348	MT-022	2	0.032	0.030	0.310	0.035	273
WH 1-022	3	0.971	0.996	0.624	0.993	341	WH 1-022	3	0.032	0.029	0.323	0.034	286
	Mean	0.976	0.999	0.623	0.993	347		Mean	0.032	0.029	0.315	0.034	278
	1	0.980	1.002	0.612	0.997	364		1	0.032	0.029	0.324	0.036	285
MT-023	2	0.985	0.998	0.626	0.993	355	MT-023	2	0.032	0.029	0.324	0.036	285
WH 1-023	3	0.973	0.998	0.620	0.995	349	WH 1-023	3	0.032	0.029	0.333	0.036	294
	Mean	0.979	0.999	0.619	0.995	356		Mean	0.032	0.029	0.327	0.036	288
Mean for all	assays	-	-	-	-	358	Mean for all a	assays	-	-	-	-	292
SD for all a	ssays	-	-	-	-	9	SD for all as	says	-	-	-	-	14
CV for all a	ssays	-	-	-	-	2.5	CV for all as	ssays	-	-	-	_	4.8

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm : Absorbance after light exposure at 440 nm A560(+) : Absorbance after light exposure at 560 nm A440(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) A Α В : Mean (Blank after exposure) В : Mean (Blank after exposure)

Laboratory : 3

Chemical Name : Sulisobenzone

			Singlet oxy	/gen						Superoxide	anion		
Experimental	Run# -	A440		A440((+)	Results*1	Experimental	Run# -	A560	(-)	A560((+)	D 1, *2
No.	Kun# -	Test Chemical	Blank	Test Chemical	Blank	Results	No.	Kun# -	Test Chemical	Blank	Test Chemical	Blank	Results ^{*2}
	1	1.008	1.005	1.005	1.000	1		1	0.034	0.030	0.034	0.035	-7
MT-001	2	1.015	1.009	1.013	1.005	0	MT-001	2	0.036	0.030	0.036	0.035	-8
W11-001	3	1.014	1.010	1.011	1.012	1	WH 1 -00 I	3	0.034	0.029	0.034	0.036	-7
	Mean	1.012	1.008	1.010	1.006	1		Mean	0.035	0.029	0.035	0.036	-7
	1	1.011	1.011	1.008	1.005	-2		1	0.033	0.029	0.033	0.033	-6
MT-002	2	1.012	1.016	1.009	1.011	-2	MT-002	2	0.034	0.030	0.033	0.034	-6
WH 1-002	3	1.015	1.018	1.013	1.013	-3	WH 1-002	3	0.034	0.028	0.032	0.033	-6
	Mean	1.013	1.015	1.010	1.010	-2		Mean	0.034	0.029	0.033	0.034	-6
	1							1	0.033	0.029	0.033	0.036	-6
MT-003	2						MT-003	2	0.034	0.029	0.034	0.034	-6
W11-003	3						W11-003	3	0.033	0.028	0.033	0.034	-6
	Mean							Mean	0.033	0.029	0.033	0.035	-6
	1	1.001	0.999	0.998	0.992	-4		1	0.033	0.029	0.033	0.034	-5
MT-004	2	1.006	1.003	1.004	0.997	-4	MT-004	2	0.033	0.029	0.033	0.034	-5
W11-004	3	1.004	1.001	1.000	0.996	-2	W11-004	3	0.033	0.029	0.033	0.034	-6
	Mean	1.004	1.001	1.001	0.995	-3		Mean	0.033	0.029	0.033	0.034	-5
	1	1.002	1.000	1.000	0.997	-1		1	0.033	0.029	0.033	0.034	-5
MT-005	2	1.001	1.003	0.999	1.000	-2	MT-005	2	0.034	0.029	0.034	0.034	-5
W11-003	3	1.005	1.002	1.001	0.998	1	W11-003	3	0.033	0.029	0.033	0.034	-6
	Mean	1.003	1.002	1.000	0.998	-1		Mean	0.033	0.029	0.033	0.034	-5
	1	1.003	1.002	1.001	0.996	-3		1	0.033	0.029	0.033	0.034	-5
MT-006	2	1.006	1.006	1.005	0.999	-5	MT-006	2	0.034	0.029	0.034	0.034	-5
1411-000	3	1.009	1.007	1.003	1.001	0	1411-000	3	0.033	0.028	0.033	0.033	-6
	Mean	1.006	1.005	1.003	0.999	-3		Mean	0.033	0.029	0.033	0.034	-5

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) A440(+) : Absorbance after light exposure at 440 nm A560(+) : Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α A : Mean (Blank after exposure) : Mean (Blank after exposure) В В

Laboratory : 3

Chemical Name : Sulisobenzone

			Singlet oxy	gen			-			Superoxide	anion		
Experimental	Run# -	A440		A440((+)	Results*1	Experimental	Run# -	A560	(-)	A560((+)	Results*2
No.	Kuii# -	Test Chemical	Blank	Test Chemical	Blank	- Results	No.	Kuii#	Test Chemical	Blank	Test Chemical	Blank	Results
	1	0.999	0.996	0.996	0.992	0		1	0.032	0.029	0.034	0.036	-5
MT-007	2	1.001	1.002	0.999	0.998	-1	MT-007	2	0.034	0.029	0.034	0.035	-6
IVI I -00 /	3	1.004	1.000	1.002	0.997	-1	IVI I -00 /	3	0.032	0.028	0.034	0.034	-5
	Mean	1.001	0.999	0.999	0.996	-1		Mean	0.033	0.029	0.034	0.035	-5
	1	1.009	1.010	0.994	0.995	0		1	0.035	0.031	0.033	0.035	-7
MT-008	2	1.010	1.012	0.996	0.997	0	MT-008	2	0.035	0.031	0.034	0.036	-6
IVI I -008	3	1.011	1.011	0.998	0.997	-2	WH 1-008	3	0.035	0.030	0.033	0.035	-7
	Mean	1.010	1.011	0.996	0.996	-1		Mean	0.035	0.031	0.033	0.036	-7
	1	0.998	0.994	0.996	0.989	-2		1	0.032	0.029	0.033	0.034	-4
MT-009	2	0.998	0.997	0.995	0.994	-1	MT-009	2	0.033	0.029	0.033	0.035	-5
IVI I -009	3	1.001	0.999	0.995	0.995	2	WH 1-009	3	0.033	0.028	0.032	0.034	-6
	Mean	0.999	0.997	0.995	0.993	0		Mean	0.033	0.029	0.033	0.034	-5
	1	1.001	0.998	0.997	0.994	0		1	0.032	0.029	0.032	0.034	-5
MT-010	2	1.001	1.002	0.996	0.997	1	MT-010	2	0.033	0.029	0.033	0.035	-5
W11-010	3	1.004	1.001	0.999	0.996	1	M11-010	3	0.033	0.028	0.032	0.034	-5
	Mean	1.002	1.000	0.997	0.996	1		Mean	0.033	0.029	0.032	0.034	-5
	1	1.001	0.998	0.998	0.993	-2		1	0.032	0.030	0.033	0.034	-6
MT-011	2	1.001	1.005	0.997	0.999	-1	MT-011	2	0.033	0.029	0.033	0.035	-6
IVI I -U I I	3	1.005	1.003	1.000	1.000	1	M11-011	3	0.034	0.028	0.033	0.035	-7
	Mean	1.002	1.002	0.998	0.997	-1		Mean	0.033	0.029	0.033	0.035	-6
	1	0.997	0.992	0.993	0.989	0		1	0.032	0.030	0.032	0.034	-5
MT-012	2	0.997	0.999	0.992	0.994	1	MT-012	2	0.033	0.029	0.033	0.035	-5
IVI I -U12	3	0.998	0.999	0.992	0.996	2	IVI I -U I Z	3	0.033	0.029	0.032	0.034	-6
	Mean	0.997	0.997	0.992	0.993	1		Mean	0.033	0.029	0.032	0.034	-5

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) A440(+) : Absorbance after light exposure at 440 nm A560(+) : Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α A : Mean (Blank after exposure) : Mean (Blank after exposure) В В

Laboratory : 3

Chemical Name : Sulisobenzone

			Singlet oxy	rgen						Superoxide	anion		
Experimental	Run# -	A440		A440((+)	Results*1	Experimental	Run# -	A560	(-)	A560((+)	Results*2
No.	Kull# -	Test Chemical	Blank	Test Chemical	Blank	Results	No.	Kull# -	Test Chemical	Blank	Test Chemical	Blank	- Results
	1	0.994	0.994	0.991	0.988	-1		1	0.032	0.029	0.032	0.034	-5
MT-013	2	0.993	0.995	0.989	0.991	0	MT-013	2	0.033	0.029	0.033	0.035	-5
W11-013	3	0.997	0.995	0.989	0.990	3	W11-013	3	0.033	0.028	0.032	0.034	-5
	Mean	0.995	0.994	0.990	0.990	1		Mean	0.033	0.029	0.032	0.034	-5
	1	1.010	1.007	1.006	1.003	0		1	0.033	0.029	0.033	0.035	-6
MT-014	2	1.010	1.012	1.005	1.008	1	MT-014	2	0.034	0.029	0.033	0.035	-7
W11-014	3	1.013	1.010	1.006	1.009	3	W11-014	3	0.034	0.029	0.032	0.037	-7
	Mean	1.011	1.010	1.006	1.006	1		Mean	0.034	0.029	0.033	0.035	-7
	1	1.008	1.002	1.003	0.997	-3		1	0.033	0.030	0.032	0.035	-4
MT-015	2	1.009	1.007	1.005	1.004	-3	MT-015	2	0.034	0.030	0.033	0.035	-4
W11-013	3	1.014	1.006	1.008	0.995	-1	W11-013	3	0.033	0.029	0.032	0.034	-5
	Mean	1.010	1.005	1.005	0.998	-2		Mean	0.033	0.030	0.032	0.034	-4
	1	0.989	0.996	0.984	0.992	1		1	0.034	0.029	0.033	0.034	-4
MT-016	2	1.005	0.988	1.002	0.985	-2	MT-016	2	0.034	0.029	0.033	0.033	-5
W11-016	3	0.995	0.989	0.989	0.984	2	W11-010	3	0.032	0.029	0.032	0.033	-4
	Mean	0.996	0.991	0.992	0.987	0		Mean	0.033	0.029	0.033	0.033	-4
	1	0.989	0.997	0.984	0.993	0		1	0.033	0.029	0.033	0.033	-5
MT-018	2	1.000	0.992	0.983	0.987	13	MT-018	2	0.033	0.028	0.033	0.033	-5
W11-018	3	0.995	0.990	0.989	0.987	2	W11-U18	3	0.032	0.028	0.033	0.033	-5
	Mean	0.995	0.993	0.985	0.989	5		Mean	0.033	0.028	0.033	0.033	-5
	1	1.001	1.009	0.995	1.001	-3		1	0.033	0.030	0.033	0.035	-5
MT-019	2	1.007	1.002	0.999	0.992	0	MT-019	2	0.033	0.030	0.033	0.035	-5
W11-019	3	1.005	1.003	0.998	0.994	-2	WH 1-019	3	0.033	0.030	0.033	0.035	-5
	Mean	1.004	1.005	0.997	0.996	-2		Mean	0.033	0.030	0.033	0.035	-5

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 560 nm A440(+) : Absorbance after light exposure at 440 nm A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α A : Mean (Blank after exposure) : Mean (Blank after exposure) В В

Laboratory : 3

Chemical Name : Sulisobenzone

·			Singlet oxy	gen						Superoxide	anion		
Experimental	Run#	A440	(-)	A440((+)	Results*1	Experimental	D #	A560	(-)	A560((+)	Results*2
No.	Kun#	Test Chemical	Blank	Test Chemical	Blank	Results	No.	Run#	Test Chemical	Blank	Test Chemical	Blank	- Results
	1	1.000	1.003	0.996	1.003	2		1	0.034	0.030	0.034	0.035	-6
MT 020	2	1.010	1.000	1.003	0.998	5	MT-020	2	0.033	0.030	0.033	0.035	-6
MT-020	3	1.008	0.999	1.001	0.997	5	M11-020	3	0.032	0.031	0.032	0.036	-5
	Mean	1.006	1.001	1.000	0.999	4		Mean	0.033	0.030	0.033	0.036	-6
	1	1.000	1.008	0.993	1.001	1		1	0.033	0.029	0.034	0.035	-6
MT 021	2	1.011	1.004	1.006	1.000	0	MT 021	2	0.032	0.030	0.033	0.035	-5
MT-021	3	1.011	1.004	1.004	1.001	2	MT-021	3	0.031	0.029	0.033	0.035	-5
	Mean	1.007	1.005	1.001	1.000	1		Mean	0.032	0.029	0.033	0.035	-5
	1	0.993	1.001	0.988	0.994	0		1	0.033	0.030	0.034	0.034	-4
MT-022	2	1.002	1.000	0.994	0.992	2	MT-022	2	0.032	0.030	0.033	0.035	-4
IVI I -022	3	1.002	0.996	0.995	0.993	1	WH 1-022	3	0.033	0.029	0.033	0.034	-5
	Mean	0.999	0.999	0.992	0.993	1		Mean	0.033	0.029	0.033	0.034	-4
	1	0.996	1.002	0.990	0.997	2	•	1	0.034	0.029	0.033	0.036	-8
MT 022	2	1.006	0.998	0.999	0.993	4	MT 022	2	0.035	0.029	0.033	0.036	-8
MT-023	3	1.004	0.998	0.998	0.995	2	MT-023	3	0.033	0.029	0.033	0.036	-7
	Mean	1.002	0.999	0.996	0.995	3		Mean	0.034	0.029	0.033	0.036	-8
Mean for all a	assays	-	-	-	-	0	Mean for all a	assays	-	-	-	-	-5
SD for all as	says	-	-	-	-	2	SD for all as	says	-	-	-	-	1
CV for all as	ssays	-	-	-	-	-	CV for all as	says	-	-	-	-	-

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 : Absorbance before light exposure at 440 nm : Absorbance before light exposure at 560 nm A440(-) A560(-) : Absorbance after light exposure at 440 nm : Absorbance after light exposure at 560 nm A440(+) A560(+) : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α A В : Mean (Blank after exposure) В : Mean (Blank after exposure)

Laboratory : 1

Chemical Name : Acridine

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

20 μM : Not determined 20 μM : Not determined 2 μM : Not determined 2 μM : Not determined

Test concentration

 $\begin{array}{cc} Singlet\ oxygen & 200\ \mu M \\ Superoxide\ anion & 200\ \mu M \end{array}$

			Singlet oxy	/gen						Superoxide	anion			Indexement		
		A440	(-)	A440	(+)				A560	(-)	A560	(+)			Judgement	
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	l Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol	
	1	1.028	1.015	0.784	1.004	233		1	0.055	0.029	0.283	0.043	217			
US-005	2	1.027	1.012	0.793	1.002	224	US-005	2	0.033	0.043	0.293	0.044	249			
08-005	3	1.035	1.016	0.806	1.007	219	08-005	3	0.053	0.029	0.282	0.046	218			
	Mean	1.030	1.015	0.794	1.004	225		Mean	0.047	0.033	0.286	0.044	228	Positive	Photoreactive	
	1	0.980	0.990	0.728	0.969	231		1	0.053	0.029	0.298	0.046	224			
US-025	2	1.007	1.013	0.759	0.988	226	US-025	2	0.033	0.047	0.305	0.047	251			
08-025	3	1.019	1.011	0.755	0.993	242	08-025	3	0.054	0.030	0.292	0.073	217			
	Mean	1.002	1.005	0.747	0.983	233		Mean	0.047	0.035	0.298	0.056	231	Positive	Photoreactive	
	1	0.983	0.987	0.736	0.976	235		1	0.053	0.028	0.286	0.045	214			
110.022	2	0.981	0.988	0.751	0.975	218	110.022	2	0.042	0.045	0.279	0.045	216			
US-032	3	0.999	1.007	0.773	0.995	214	US-032	3	0.053	0.028	0.287	0.072	215			
	Mean	0.988	0.994	0.753	0.982	222		Mean	0.049	0.034	0.284	0.054	215	Positive	Photoreactive	
Mean for 3 a	issays	-	-	-	-	227	Mean for 3	assays	-	-	-	-	225	Positive *3	Photoreactive*3	

: Absorbance before light exposure at 440 nm : Absorbance after light exposure at 440 nm $\,$

A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm

Α

В

: Mean (Blank before light exposure) : Mean (Blank after light exposure)

Judged by Original Criteria:

A440(+)

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

(Photoreactive), (Weakly photoreactive), (Non-photoreactive): Ros assay was conducted at 2 μM due to precipitation at 20μM and 200μM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results ≥70, or Non-photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥20, <70), or Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, the results shown in the parenthesis since the results at 2 μM were not used for the judgment of integrated results or data analyses.

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 1

Chemical Name : Acridine HCl

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM : Solution $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{ll} \mbox{Singlet oxygen} & 200 \ \mu\mbox{M} \\ \mbox{Superoxide anion} & 200 \ \mu\mbox{M} \end{array}$

			Singlet oxy	ygen						Superoxide	anion			Judgement		
		A440	(-)	A440((+)				A560	(-)	A560((+)			Judgement	
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol	
	1	1.012	1.015	0.764	1.004	236		1	0.036	0.029	0.258	0.043	211			
110 005	2	1.015	1.012	0.779	1.002	224	110 005	2	0.034	0.043	0.259	0.044	214			
US-005	3	1.019	1.016	0.796	1.007	212	US-005	3	0.038	0.029	0.257	0.046	208			
	Mean	1.015	1.015	0.780	1.004	224		Mean	0.036	0.033	0.258	0.044	211	Positive	Photoreactive	
	1	0.996	0.990	0.752	0.969	222		1	0.034	0.029	0.272	0.046	217			
US-025	2	1.005	1.013	0.764	0.988	219	US-025	2	0.031	0.047	0.266	0.047	214			
03-023	3	1.003	1.011	0.780	0.993	200	03-023	3	0.036	0.030	0.271	0.073	214			
	Mean	1.001	1.005	0.765	0.983	214		Mean	0.034	0.035	0.269	0.056	215	Positive	Photoreactive	
	1	0.998	0.986	0.758	0.973	229		1	0.037	0.029	0.267	0.042	217			
US-031	2	1.003	0.985	0.769	0.979	224	US-031	2	0.033	0.042	0.264	0.046	218			
03-031	3	0.998	0.995	0.773	0.985	215	03-031	3	0.037	0.029	0.260	0.049	211			
	Mean	0.999	0.989	0.767	0.979	223		Mean	0.035	0.033	0.264	0.046	215	Positive	Photoreactive	
Mean for 3 a	ssays	-	-	-	-	220	Mean for 3 a	issays	-	-	-	-	214	Positive *3	Photoreactive*3	

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) Α Α : Mean (Blank before light exposure) : Mean (Blank after light exposure) В : Mean (Blank after light exposure) В

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results <25 and Superoxide anion results <20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

(Photoreactive), (Weakly photoreactive), (Non-photoreactive): Ros assay was conducted at $2 \mu M$ due to precipitation at $20 \mu M$ and $200 \mu M$. Although, the results met the photoreactive criteria (Singlet oxygen results ≥ 25 and Superoxide results ≥ 25 and Superoxide results ≥ 20 , Singlet oxygen results ≥ 25 and Superoxide results ≥ 20 , or Non-photoreactive criteria (Singlet oxygen results ≤ 25 and Superoxide results ≥ 20 , or Non-photoreactive criteria (Singlet oxygen results ≤ 25 and Superoxide results ≤ 20), the results shown in the parenthesis since the results at $2 \mu M$ were not used for the judgment of integrated results or data analyses.

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 1

Chemical Name : Amiodarone HCl

Solubility

Singlet oxygen 200 μM : Precipitation Superoxide anion 200 μM : Precipitation 20 μM : Precipitation 2 μM : Solution 20 μM : Precipitation 2 μM : Solution

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 2 \ \mu\text{M} \\ \text{Superoxide anion} & 2 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion			,	udgement
		A440	(-)	A440((+)	_			A560	(-)	A560((+)	_		uugement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.028	0.990	0.968	0.969	38		1	0.077	0.029	0.068	0.046	-30		
US-025	2	1.024	1.013	0.972	0.988	30	US-025	2	0.044	0.047	0.062	0.047	-3		
08-025	3	1.035	1.011	0.982	0.993	31	US-025	3	0.063	0.030	0.070	0.073	-14		
	Mean	1.029	1.005	0.974	0.983	33		Mean	0.061	0.035	0.067	0.056	-16	Positive	(Photoreactive)
	1	1.021	0.986	0.995	0.973	17		1	0.074	0.029	0.062	0.042	-26		
110.021	2	0.998	0.985	0.970	0.979	18	110 021	2	0.042	0.042	0.062	0.046	7		
US-031	3	1.005	0.995	1.001	0.985	-7	US-031	3	0.077	0.029	0.071	0.049	-19		
	Mean	1.008	0.989	0.989	0.979	9		Mean	0.065	0.033	0.065	0.046	-13	Inconclusive	(Non-photoreactive)
	1	0.977	0.982	0.939	0.972	26		1	0.036	0.033	0.047	0.041	-9		
110 022	2	0.990	0.989	0.954	0.975	24	110 022	2	0.034	0.034	0.054	0.051	0		
US-033	3	1.001	0.987	0.973	0.975	16	US-033	3	0.038	0.028	0.052	0.064	-6		
	Mean	0.989	0.986	0.955	0.974	22		Mean	0.036	0.032	0.051	0.052	-5	Inconclusive	(Non-photoreactive)
Mean for 3 a	issays	-	-	-	-	21	Mean for 3 a	assays	-	-	-	-	-11	Inconclusive *3	(Non-photoreactive)*3

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ *2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+) : Absorbance after light exposure at 560 nm Α : Mean (Blank before light exposure) Α : Mean (Blank before light exposure) : Mean (Blank after light exposure) В : Mean (Blank after light exposure) В

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive: Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

(Photoreactive), (Weakly photoreactive), (Non-photoreactive): Ros assay was conducted at $2 \mu M$ due to precipitation at $20 \mu M$ and $200 \mu M$. Although, the results met the photoreactive criteria (Singlet oxygen results ≥ 25 and Superoxide results ≥ 25 and Superoxide results ≥ 25 and Superoxide results ≥ 20 , (70), or Non-photoreactive criteria (Singlet oxygen results ≤ 25 and Superoxide results ≥ 20 , (70), or Non-photoreactive criteria (Singlet oxygen results ≤ 25 and Superoxide results ≤ 20 , (70), or Non-photoreactive criteria (Singlet oxygen results ≤ 25 and Superoxide results ≤ 20), the results shown in the parenthesis since the results at $2 \mu M$ were not used for the judgment of integrated results or data analyses.

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory : 1

Chemical Name : Chlorpromazine HCl

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} Singlet\ oxygen & 200\ \mu M \\ Superoxide\ anion & 200\ \mu M \end{array}$

		·	Singlet oxy	/gen						Superoxide	anion				Indoomont
		A440	(-)	A440(+)	_			A560	(-)	A560(+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.020	1.014	1.028	1.006	-18		1	0.048	0.033	0.143	0.046	81		
US-001	2	1.002	1.028	1.009	1.014	-17	110.001	2	0.051	0.046	0.146	0.053	82		
0.5-001	3	1.017	1.029	1.024	1.020	-18	US-001	3	0.044	0.034	0.146	0.056	88		
	Mean	1.013	1.024	1.020	1.013	-18		Mean	0.048	0.038	0.145	0.052	84	Positive	Photoreactive
	1	0.988	1.008	1.012	0.991	-38		1	0.042	0.033	0.149	0.039	101	,	
US-023	2	0.989	1.024	1.016	1.013	-41	US-023	2	0.038	0.049	0.154	0.044	109		
08-023	3	0.998	1.022	1.027	1.008	-43	US-023	3	0.040	0.029	0.154	0.051	107		
	Mean	0.992	1.018	1.018	1.004	-41		Mean	0.040	0.037	0.152	0.044	106	Positive	Photoreactive
	1	0.956	0.973	0.960	0.960	-13		1	0.039	0.030	0.144	0.038	96	,	
US-029	2	0.968	0.986	0.974	0.979	-16	US-029	2	0.040	0.044	0.146	0.044	97		
03-029	3	0.976	0.987	0.981	0.978	-15	03-029	3	0.039	0.029	0.147	0.047	99		
	Mean	0.967	0.982	0.971	0.972	-15		Mean	0.039	0.034	0.146	0.043	97	Positive	Photoreactive
Mean for 3 a	ssays	-	_	-	-	-25	Mean for 3 a	issays	-	-	-	-	96	Positive *3	Photoreactive*3

: Absorbance before light exposure at 440 nm
: Absorbance after light exposure at 440 nm
: Mean (Blank before light exposure)
: Mean (Blank after light exposure)

Judged by Original Criteria:

A440(+)

В

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory

Chemical Name Doxycycline HCl

Solubility

Singlet oxygen 200 μM: Superoxide anion

Solution 200 μM: Solution 20 μM: Not determined 20 μM: Not determined 2 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

			Singlet oxy	/gen		•			•	Superoxide	anion	·			[udaamant
		A440	(-)	A440((+)				A560	(-)	A5600	(+)			ludgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.041	1.017	0.743	1.007	289		1	0.062	0.031	0.412	0.038	344		
US-002	2	1.043	1.028	0.785	1.021	249	US-002	2	0.067	0.043	0.436	0.041	362		
US-002	3	1.061	1.031	0.777	1.020	275	US-002	3	0.063	0.030	0.424	0.048	354		
	Mean	1.048	1.025	0.768	1.016	271		Mean	0.064	0.035	0.424	0.042	353	Positive	Photoreactive
	1	1.039	0.998	0.734	0.987	295		1	0.050	0.029	0.550	0.046	476		
US-004	2	1.016	1.027	0.764	1.019	243	US-004	2	0.079	0.029	0.587	0.059	484		
08-004	3	1.049	1.021	0.769	1.010	270	US-004	3	0.048	0.029	0.571	0.054	499		
	Mean	1.035	1.015	0.756	1.005	269		Mean	0.059	0.029	0.569	0.053	486	Positive	Photoreactive
	1	0.999	0.980	0.707	0.971	281		1	0.054	0.029	0.415	0.051	335		
US-028	2	0.991	0.988	0.738	0.977	241	US-028	2	0.063	0.030	0.433	0.053	344		
US-028	3	1.016	0.995	0.740	0.983	265	US-028	3	0.054	0.028	0.428	0.061	347		
	Mean	1.002	0.988	0.728	0.977	262		Mean	0.057	0.029	0.425	0.055	342	Positive	Photoreactive
Mean for 3 a	ssays	-	_	-	-	267	Mean for 3 a	assays	-	-	-	-	394	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm A560(-) A440(+): Absorbance after light exposure at 440 nm A560(+): Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$

: Absorbance before light exposure at 560 nm : Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Fenofibrate

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 µM: Solution 2 µM: Not determined 20 µM: Solution 2 μM: Not determined

Test concentration

Singlet oxygen 20 μM Superoxide anion 20 μM

			Singlet oxy	/gen	·					Superoxide	anion				Judgement
		A440	(-)	A440((+)				A560	(-)	A560((+)	_		ruugement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria fo Proposed Protocol
	1	0.961	0.970	0.827	0.965	126		1	0.042	0.033	0.058	0.040	2		
US-027	2	0.975	0.979	0.844	0.970	123	US-027	2	0.041	0.030	0.058	0.047	3		
08-027	3	0.979	0.978	0.847	0.969	124	US-027	3	0.043	0.029	0.053	0.046	-4		
	Mean	0.972	0.976	0.840	0.968	124		Mean	0.042	0.030	0.057	0.044	0	Positive	Photoreactive
	1	1.021	0.974	0.810	0.965	202		1	0.069	0.036	0.049	0.049	-44		
US-034	2	1.014	1.001	0.802	0.992	203	US-034	2	0.057	0.042	0.049	0.045	-33		
03-034	3	1.029	0.994	0.819	0.985	201	03-034	3	0.067	0.029	0.050	0.085	-41		
	Mean	1.022	0.990	0.810	0.981	202		Mean	0.064	0.036	0.049	0.060	-39	Positive	Photoreactive
	1	0.995	0.977	0.807	0.965	178		1	0.066	0.028	0.059	0.043	-31		
US-036	2	0.997	0.990	0.817	0.984	170	US-036	2	0.063	0.032	0.062	0.048	-25		
US-036	3	1.001	0.988	0.819	0.977	172	US-036	3	0.066	0.029	0.053	0.072	-38		
	Mean	0.998	0.985	0.814	0.975	173		Mean	0.065	0.030	0.058	0.054	-31	Positive	Photoreactive
Mean for 3 a	ssays	-	_	-	-	166	Mean for 3 a	assays	-	_	-	-	-23	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Furosemide

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

			Singlet oxy	/gen		•				Superoxide	anion				Indoomont
		A440	(-)	A440((+)				A560	(-)	A560((+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.008	1.006	0.773	0.991	224		1	0.042	0.035	0.166	0.046	109		
HE 007	2	1.024	1.015	0.784	1.005	229	110 007	2	0.043	0.034	0.173	0.054	116		
US-007	3	1.028	1.010	0.791	1.002	227	US-007	3	0.044	0.033	0.179	0.049	120		
	Mean	1.020	1.010	0.783	0.999	227		Mean	0.043	0.034	0.173	0.049	115	Positive	Photoreactive
	1	0.980	0.970	0.728	0.965	244		1	0.041	0.033	0.172	0.040	118		
US-027	2	0.988	0.979	0.742	0.970	238	US-027	2	0.043	0.030	0.178	0.047	122		
08-027	3	0.998	0.978	0.759	0.969	231	08-027	3	0.045	0.029	0.181	0.046	122		
	Mean	0.989	0.976	0.743	0.968	238		Mean	0.043	0.030	0.177	0.044	121	Positive	Photoreactive
	1	0.993	0.974	0.744	0.965	240		1	0.044	0.036	0.164	0.049	97		
US-034	2	0.988	1.001	0.760	0.992	219	US-034	2	0.044	0.042	0.169	0.045	101		
08-034	3	0.997	0.994	0.776	0.985	212	05-034	3	0.044	0.029	0.175	0.085	107		
	Mean	0.993	0.990	0.760	0.981	224		Mean	0.044	0.036	0.169	0.060	102	Positive	Photoreactive
Mean for 3 a	assays	-	_	_	_	230	Mean for 3 a	assays	_	_	_	-	113	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 A440(-)

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm : Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

A440(+)

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Ketoprofen

Solubility

Singlet oxygen 200 μM: Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

			Singlet oxy	/gen						Superoxide	anion				[udaamant
		A440	(-)	A440	(+)				A560	(-)	A560((+)		J	ludgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.012	1.015	0.640	1.004	361		1	0.048	0.029	0.185	0.043	126		
110 005	2	1.024	1.012	0.652	1.002	362	US-005	2	0.037	0.043	0.177	0.044	129		
US-005	3	1.027	1.016	0.664	1.007	351	08-005	3	0.044	0.029	0.190	0.046	135		
	Mean	1.021	1.015	0.652	1.004	358		Mean	0.043	0.033	0.184	0.044	130	Positive	Photoreactive
	1	1.014	0.990	0.627	0.969	365		1	0.047	0.029	0.184	0.046	116		
US-025	2	1.017	1.013	0.629	0.988	366	US-025	2	0.036	0.047	0.183	0.047	126		
US-025	3	1.025	1.011	0.648	0.993	355	US-025	3	0.043	0.030	0.190	0.073	125		
	Mean	1.019	1.005	0.635	0.983	362		Mean	0.042	0.035	0.185	0.056	122	Positive	Photoreactive
	1	1.004	0.986	0.624	0.973	371		1	0.064	0.029	0.195	0.042	119		
110 021	2	1.005	0.985	0.623	0.979	372	110 021	2	0.040	0.042	0.216	0.046	163		
US-031	3	1.008	0.995	0.638	0.985	360	US-031	3	0.058	0.029	0.199	0.049	129		
	Mean	1.006	0.989	0.628	0.979	368		Mean	0.054	0.033	0.204	0.046	137	Positive	Photoreactive
Mean for 3 a	issays	-	-	-	-	363	Mean for 3	assays	-	-	-	-	130	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm : Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

A440(-)

A440(+)

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 1

Chemical Name : 6-methylcoumarine

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion				Judgement
		A440		A440	(+)				A560	(-)	A560((+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.018	1.017	0.894	1.007	115		1	0.073	0.031	0.174	0.038	94		
US-002	2	1.036	1.028	0.918	1.021	109	US-002	2	0.040	0.043	0.173	0.041	126		
US-002	3	1.048	1.031	0.919	1.020	119	05-002	3	0.069	0.030	0.181	0.048	106		
	Mean	1.034	1.025	0.910	1.016	114		Mean	0.061	0.035	0.176	0.042	109	Positive	Photoreactive
	1	1.039	0.998	0.907	0.987	123		1	0.037	0.029	0.187	0.046	126		
US-004	2	1.038	1.027	0.922	1.019	106	US-004	2	0.033	0.029	0.186	0.059	129		
US-004	3	1.038	1.021	0.923	1.010	105	05-004	3	0.038	0.029	0.190	0.054	128		
	Mean	1.038	1.015	0.917	1.005	111		Mean	0.036	0.029	0.188	0.053	128	Positive	Photoreactive
	1	1.000	0.980	0.859	0.971	130		1	0.040	0.029	0.197	0.051	131		
US-028	2	1.001	0.988	0.874	0.977	116	US-028	2	0.038	0.030	0.192	0.053	128		
US-028	3	1.009	0.995	0.885	0.983	114	05-028	3	0.040	0.028	0.197	0.061	131		
	Mean	1.003	0.988	0.872	0.977	120		Mean	0.039	0.029	0.195	0.055	130	Positive	Photoreactive
Mean for 3 a	ssavs	-	-	-	-	115	Mean for 3	assavs	-	_	-	-	122	Positive *3	Photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M.

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory

Chemical Name 8-MOP

Solubility

Singlet oxygen 200 μM: Solution Superoxide anion 200 µM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

•			Singlet oxy	/gen						Superoxide	anion				Indoomont
		A440	(-)	A440((+)	_			A560	(-)	A560((+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.022	1.020	0.924	1.010	87		1	0.073	0.031	0.166	0.044	69		
US-006	2	1.023	1.026	0.929	1.011	83	TIC OOC	2	0.047	0.031	0.160	0.048	90		
08-006	3	1.021	1.017	0.930	1.008	80	US-006	3	0.077	0.031	0.168	0.069	68		
	Mean	1.022	1.021	0.928	1.010	83		Mean	0.066	0.031	0.164	0.054	76	Positive	Photoreactive
	1	0.978	0.973	0.869	0.965	101		1	0.037	0.032	0.191	0.040	142		
US-026	2	0.986	0.982	0.879	0.977	98	US-026	2	0.034	0.038	0.186	0.049	140		
03-020	3	0.991	0.986	0.880	0.976	103	03-020	3	0.043	0.029	0.187	0.046	132		
	Mean	0.985	0.981	0.876	0.973	101		Mean	0.038	0.033	0.188	0.045	138	Positive	Photoreactive
	1	0.974	0.987	0.883	0.976	79		1	0.041	0.028	0.174	0.045	113		
US-032	2	0.987	0.988	0.890	0.975	85	US-032	2	0.034	0.045	0.167	0.045	113		
05-032	3	1.000	1.007	0.917	0.995	71	US-032	3	0.043	0.028	0.175	0.072	112		
	Mean	0.987	0.994	0.897	0.982	78		Mean	0.040	0.034	0.172	0.054	113	Positive	Photoreactive
Mean for 3 a	assays	-	_	_	_	87	Mean for 3 a	assavs	_	_	_	-	109	Positive *3	Photoreactive*3

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 1

Chemical Name : Nalidixic acid

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM : Solution $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} Singlet\ oxygen & 200\ \mu M \\ Superoxide\ anion & 200\ \mu M \end{array}$

		•	Singlet oxy	/gen	·		•			Superoxide	anion	·			Indoomont
		A440	(-)	A440((+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.997	1.020	0.622	1.010	364		1	0.047	0.031	0.376	0.044	306		
US-006	2	0.996	1.026	0.645	1.011	340	US-006	2	0.041	0.031	0.383	0.048	319		
08-006	3	1.008	1.017	0.656	1.008	341	05-006	3	0.046	0.031	0.510	0.069	441		
	Mean	1.000	1.021	0.641	1.010	348		Mean	0.045	0.031	0.423	0.054	355	Positive	Photoreactive
	1	0.992	0.973	0.799	0.965	185		1	0.062	0.032	0.327	0.040	254		
US-026	2	0.992	0.982	0.791	0.977	193	US-026	2	0.033	0.038	0.319	0.049	274		
03-020	3	0.999	0.986	0.814	0.976	177	03-020	3	0.061	0.029	0.357	0.046	284		
	Mean	0.994	0.981	0.801	0.973	185		Mean	0.052	0.033	0.335	0.045	271	Positive	Photoreactive
	1	0.985	0.974	0.784	0.965	192		1	0.054	0.036	0.360	0.049	282		
110.024	2	0.990	1.001	0.798	0.992	183	LIC 024	2	0.044	0.042	0.351	0.045	283		
US-034	3	1.000	0.994	0.821	0.985	170	US-034	3	0.058	0.029	0.309	0.085	227		
	Mean	0.991	0.990	0.801	0.981	182		Mean	0.052	0.036	0.340	0.060	264	Positive	Photoreactive
Mean for 3 a	ssays	-	-	-	-	238	Mean for 3 a	issays	-	-	-	-	297	Positive *3	Photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory : 1

Chemical Name : Nalidixic acid (Na salt)

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM : Solution $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{ll} \mbox{Singlet oxygen} & 200 \ \mu\mbox{M} \\ \mbox{Superoxide anion} & 200 \ \mu\mbox{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion			1	Ludaamant
		A440	(-)	A440((+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.016	1.020	0.812	1.010	193		1	0.047	0.031	0.319	0.044	249		
110.000	2	1.022	1.026	0.836	1.011	175	110.000	2	0.035	0.031	0.309	0.048	251		
US-006	3	1.047	1.017	0.854	1.008	182	US-006	3	0.043	0.031	0.427	0.069	361		
	Mean	1.028	1.021	0.834	1.010	183		Mean	0.042	0.031	0.352	0.054	287	Positive	Photoreactive
	1	0.993	0.973	0.823	0.965	162		1	0.058	0.032	0.288	0.040	219		
US-026	2	1.005	0.982	0.823	0.977	175	US-026	2	0.039	0.038	0.300	0.049	249		
US-026	3	1.009	0.986	0.843	0.976	159	US-026	3	0.071	0.029	0.314	0.046	231		
	Mean	1.003	0.981	0.829	0.973	165		Mean	0.056	0.033	0.301	0.045	233	Positive	Photoreactive
	1	0.993	0.987	0.790	0.976	191		1	0.068	0.028	0.284	0.045	196		
110.022	2	0.992	0.988	0.804	0.975	176	110.022	2	0.040	0.045	0.266	0.045	206		
US-032	3	1.008	1.007	0.814	0.995	181	US-032	3	0.068	0.028	0.296	0.072	208		
	Mean	0.998	0.994	0.803	0.982	183		Mean	0.058	0.034	0.282	0.054	203	Positive	Photoreactive
Mean for 3 a	ssays	-	-	=	-	177	Mean for 3	assays	-	-	-	-	241	Positive *3	Photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 1

Chemical Name : Norfloxacin

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen	·					Superoxide	anion				udaamant
		A440	(-)	A440((+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.022	1.017	0.791	1.007	222		1	0.042	0.031	0.197	0.038	147		
US-002	2	1.040	1.028	0.812	1.021	219	US-002	2	0.037	0.043	0.192	0.041	148		
08-002	3	1.039	1.031	0.824	1.020	205	05-002	3	0.042	0.030	0.189	0.048	140		
	Mean	1.034	1.025	0.809	1.016	215		Mean	0.040	0.035	0.192	0.042	145	Positive	Photoreactive
	1	1.000	0.998	0.766	0.987	224		1	0.053	0.029	0.216	0.046	139		
US-004	2	1.036	1.027	0.807	1.019	220	US-004	2	0.044	0.029	0.214	0.059	147		
03-004	3	1.038	1.021	0.815	1.010	214	03-004	3	0.058	0.029	0.212	0.054	131		
	Mean	1.025	1.015	0.796	1.005	219		Mean	0.051	0.029	0.214	0.053	139	Positive	Photoreactive
	1	0.984	0.980	0.754	0.971	220		1	0.056	0.029	0.199	0.051	117	,	
US-028	2	0.992	0.988	0.765	0.977	216	US-028	2	0.045	0.030	0.192	0.053	120		
US-028	3	0.997	0.995	0.781	0.983	205	US-028	3	0.060	0.028	0.188	0.061	102		
	Mean	0.991	0.988	0.767	0.977	214		Mean	0.054	0.029	0.193	0.055	113	Positive	Photoreactive
Mean for 3 a	ssays	-	_	-	-	216	Mean for 3 a	issays	-	-	-	-	132	Positive *3	Photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Ofloxacin

Solubility

Singlet oxygen 200 μM: Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

			Singlet oxy	/gen			•	<u> </u>		Superoxide	anion				Indoomont
		A440	(-)	A440((+)	_			A560	(-)	A560((+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.026	1.017	0.813	1.007	204		1	0.046	0.031	0.388	0.038	335		
US-002	2	1.015	1.028	0.814	1.021	192	110 000	2	0.044	0.043	0.389	0.041	338		
08-002	3	1.043	1.031	0.852	1.020	182	US-002	3	0.048	0.030	0.434	0.048	379		
	Mean	1.028	1.025	0.826	1.016	193		Mean	0.046	0.035	0.403	0.042	351	Positive	Photoreactive
	1	1.002	0.998	0.776	0.987	216		1	0.060	0.029	0.296	0.046	212		
US-004	2	1.027	1.027	0.814	1.019	203	US-004	2	0.041	0.029	0.303	0.059	238		
03-004	3	1.031	1.021	0.830	1.010	191	03-004	3	0.059	0.029	0.316	0.054	233		
	Mean	1.020	1.015	0.807	1.005	203		Mean	0.053	0.029	0.305	0.053	228	Positive	Photoreactive
	1	0.986	0.980	0.769	0.971	206		1	0.062	0.029	0.359	0.051	271		
US-028	2	0.989	0.988	0.783	0.977	194	US-028	2	0.044	0.030	0.359	0.053	289		
05-028	3	0.993	0.995	0.805	0.983	177	US-028	3	0.056	0.028	0.345	0.061	262		
	Mean	0.989	0.988	0.786	0.977	192		Mean	0.054	0.029	0.354	0.055	274	Positive	Photoreactive
Mean for 3 a	assays	-	_	_	_	196	Mean for 3 a	assays	_	_	_	-	284	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 A440(-)

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm : Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

A440(+)

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Piroxicam

Solubility

Singlet oxygen 200 µM: Solution Superoxide anion 200 µM: Precipitation 20 µM: Not determined 2 μM: Not determined 20 µM: Solution 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 20 μM

			Singlet oxy	/gen						Superoxide	anion				I
		A440	(-)	A440	(+)				A560	(-)	A560(+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria fo Proposed Protocol
	1	1.010	1.020	0.793	1.010	206		1	0.045	0.032	0.088	0.040	32		
US-006	2	1.027	1.026	0.824	1.011	191	US-0026	2	0.063	0.038	0.101	0.049	26		
08-006	3	1.033	1.017	0.846	1.008	177	US-0026	3	0.058	0.029	0.097	0.046	26		
	Mean	1.023	1.021	0.821	1.010	191		Mean	0.055	0.033	0.095	0.045	28	Positive	Photoreactive
	1	0.995	0.973	0.761	0.965	226		1	0.057	0.028	0.113	0.045	35		
US-026	2	0.999	0.982	0.792	0.977	200	US-0032	2	0.070	0.045	0.120	0.045	30		
03-020	3	1.004	0.986	0.793	0.976	203	03-0032	3	0.050	0.028	0.118	0.072	48		
	Mean	0.999	0.981	0.782	0.973	210		Mean	0.059	0.034	0.117	0.054	38	Positive	Photoreactive
	1	1.000	0.987	0.736	0.976	252		1	0.039	0.033	0.088	0.041	29		
110 022	2	0.981	0.988	0.758	0.975	211	110 022	2	0.051	0.034	0.092	0.051	21		
US-032	3	1.010	1.007	0.764	0.995	234	US-033	3	0.047	0.028	0.094	0.064	27		
	Mean	0.997	0.994	0.753	0.982	232		Mean	0.045	0.032	0.091	0.052	26	Positive	Photoreactive
Mean for 3 a	ssavs	-	_	-	-	211	Mean for 3 a	assays	_	_	_	-	31	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory :

Chemical Name : Promethazine HCl

Solubility

Singlet oxygen 200 µM : Solution Superoxide anion 200 µM : Solution $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} Singlet\ oxygen & 200\ \mu M \\ Superoxide\ anion & 200\ \mu M \end{array}$

			Singlet oxy	/gen						Superoxide	anion				ludaamant
		A440	(-)	A440((+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.002	1.014	0.911	1.006	80		1	0.041	0.033	0.121	0.046	66		
US-001	2	1.017	1.028	0.934	1.014	72	US-001	2	0.037	0.046	0.119	0.053	68		
08-001	3	1.008	1.029	0.939	1.020	59	US-001	3	0.043	0.034	0.123	0.056	67		
	Mean	1.009	1.024	0.928	1.013	70		Mean	0.040	0.038	0.121	0.052	67	Positive	Photoreactive
	1	1.001	1.008	0.921	0.991	67		1	0.040	0.033	0.129	0.039	82		
US-023	2	1.005	1.024	0.933	1.013	59	US-023	2	0.034	0.049	0.127	0.044	86		
03-023	3	1.005	1.022	0.933	1.008	59	03-023	3	0.041	0.029	0.136	0.051	89		
	Mean	1.004	1.018	0.929	1.004	62		Mean	0.038	0.037	0.131	0.044	86	Positive	Photoreactive
	1	0.971	0.973	0.872	0.960	89		1	0.038	0.030	0.129	0.038	81	,	
US-029	2	0.984	0.986	0.894	0.979	80	US-029	2	0.033	0.044	0.131	0.044	89		
0.5-029	3	0.994	0.987	0.900	0.978	84	08-029	3	0.038	0.029	0.136	0.047	89		
	Mean	0.983	0.982	0.889	0.972	84		Mean	0.036	0.034	0.132	0.043	86	Positive	Photoreactive
Mean for 3 a	ssays	-	_	-	-	72	Mean for 3 a	assays	-	_	-	-	80	Positive *3	Photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 1

Chemical Name : Rosiglitazone

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM : Precipitation $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 20 \ \mu\text{M} \end{array}$

			Singlet oxy	ygen						Superoxide	anion	·			Judgement
		A440	(-)	A440	(+)				A560	(-)	A560(+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.000	1.011	0.861	1.001	129		1	0.043	0.030	0.099	0.045	40		
US-003	2	0.991	1.028	0.866	1.017	115	US-0024	2	0.037	0.040	0.098	0.052	45		/
08-003	3	1.003	1.024	0.883	1.016	110	05-0024	3	0.044	0.029	0.096	0.051	37		/
	Mean	0.998	1.021	0.870	1.011	118		Mean	0.041	0.033	0.098	0.049	41	Positive	
	1	0.966	1.014	0.846	1.003	107		1	0.044	0.029	0.100	0.047	35		
US-024	2	0.995	1.023	0.876	1.009	105	US-030	2	0.040	0.043	0.100	0.051	39		
03-024	3	0.994	1.023	0.880	1.006	100	03-030	3	0.045	0.030	0.100	0.066	34		
	Mean	0.985	1.020	0.868	1.006	104		Mean	0.043	0.034	0.100	0.055	36	Positive	
	1	0.979	0.997	0.844	1.002	137		1	0.041	0.034	0.092	0.045	29		
110.020	2	0.965	1.003	0.841	0.996	125	110.025	2	0.041	0.030	0.092	0.048	29		
US-030	3	0.978	1.001	0.847	1.005	132	US-035	3	0.042	0.028	0.092	0.066	28		
	Mean	0.974	1.000	0.844	1.001	131		Mean	0.041	0.031	0.092	0.053	29	Positive	
Mean for 3 a	ssavs	-	-	-	_	118	Mean for 3 a	assavs	-	_	-	-	35	Positive *3	1/

A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)
B : Mean (Blank after light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results <25 and Superoxide results \ge 20, <70 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3:} Final judgment based on the mean value of three assays

Laboratory :

Chemical Name : Tetracycline

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} Singlet\ oxygen & 200\ \mu M \\ Superoxide\ anion & 200\ \mu M \end{array}$

	·		Singlet oxy	/gen	·		•	<u> </u>	•	Superoxide	anion				Indoomont
		A440	(-)	A440(+)				A560	(-)	A560	(+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.039	1.014	0.810	1.006	217		1	0.060	0.033	0.271	0.046	197		
US-001	2	1.037	1.028	0.840	1.014	186	US-001	2	0.058	0.046	0.266	0.053	194		
08-001	3	1.063	1.029	0.853	1.020	198	US-001	3	0.056	0.034	0.269	0.056	200		
	Mean	1.046	1.024	0.835	1.013	200		Mean	0.058	0.038	0.269	0.052	197	Positive	Photoreactive
	1	1.026	1.008	0.807	0.991	205		1	0.050	0.033	0.268	0.039	211		
US-023	2	1.011	1.024	0.812	1.013	185	US-023	2	0.047	0.049	0.267	0.044	214		
08-023	3	1.039	1.022	0.833	1.008	192	US-023	3	0.051	0.029	0.280	0.051	222		
	Mean	1.025	1.018	0.817	1.004	194		Mean	0.049	0.037	0.272	0.044	216	Positive	Photoreactive
	1	1.029	0.973	0.781	0.960	237		1	0.054	0.030	0.274	0.038	212		
110 020	2	1.038	0.986	0.834	0.979	194	110.020	2	0.048	0.044	0.280	0.044	224		
US-029	3	1.052	0.987	0.874	0.978	168	US-029	3	0.052	0.029	0.279	0.047	218		
	Mean	1.039	0.982	0.830	0.972	200		Mean	0.051	0.034	0.278	0.043	218	Positive	Photoreactive
Mean for 3 a	ssavs	_	_	_	-	198	Mean for 3	assays	_	-	_	-	210	Positive *3	Photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm

A440(+) : Absorbance after light exposure at 440 nm

A560(-) : Absorbance after light exposure at 560 nn

A : Mean (Blank before light exposure)

B : Mean (Blank after light exposure)

B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Anthracene

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 µM: Solution 2 μM: Not determined 20 μM: Precipitation 2 μM : Solution

Test concentration

Singlet oxygen 20 μM Superoxide anion $2 \mu M$

			Singlet oxy	/gen					·	Superoxide	anion				[udaamant
		A440	(-)	A440((+)				A560	(-)	A560((+)			ludgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.088	1.014	0.790	1.003	284		1	0.040	0.030	0.102	0.045	46		
US-024	2	1.094	1.023	0.819	1.009	261	110.024	2	0.033	0.040	0.090	0.052	41		
US-024	3	1.099	1.023	0.849	1.006	237	US-024	3	0.040	0.029	0.087	0.051	31		
	Mean	1.094	1.020	0.819	1.006	261		Mean	0.038	0.033	0.093	0.049	39	Positive	Photoreactive
	1	1.068	0.997	0.717	1.002	353		1	0.059	0.029	0.106	0.047	26		
US-030	2	1.065	1.003	0.715	0.996	352	US-030	2	0.033	0.043	0.146	0.051	92		
08-030	3	1.073	1.001	0.758	1.005	316	08-030	3	0.061	0.030	0.107	0.066	25		
	Mean	1.069	1.000	0.730	1.001	340		Mean	0.051	0.034	0.120	0.055	48	Positive	Photoreactive
	1	1.056	0.982	0.755	0.972	289		1	0.048	0.033	0.067	0.041	0		
110.022	2	1.078	0.989	0.786	0.975	280	110 022	2	0.038	0.034	0.060	0.051	2		
US-033	3	1.074	0.987	0.814	0.975	248	US-033	3	0.050	0.028	0.073	0.064	2		
	Mean	1.069	0.986	0.785	0.974	272		Mean	0.045	0.032	0.067	0.052	1	Positive	Photoreactive
Mean for 3 a	issays	-	-	-	-	291	Mean for 3 a	assays	-	-	-	-	29	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Avobenzone

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 µM: Solution 2 μM: Not determined 20 μM: Precipitation 2 μM : Solution

Test concentration

Singlet oxygen 20 μM Superoxide anion $2 \mu M$

		·	Singlet oxy	/gen	·					Superoxide	anion	·			[udaamant
		A440	(-)	A440((+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.079	0.973	0.923	0.960	146		1	0.059	0.030	0.100	0.038	32		
US-029	2	1.091	0.986	0.943	0.979	138	US-029	2	0.034	0.044	0.135	0.044	92		
08-029	3	1.076	0.987	0.925	0.978	142	08-029	3	0.065	0.029	0.107	0.047	33		
	Mean	1.082	0.982	0.930	0.972	142		Mean	0.053	0.034	0.114	0.043	52	Positive	Photoreactive
	1	1.074	0.982	0.951	0.975	114		1	0.063	0.034	0.101	0.045	17		
US-035	2	1.077	0.985	0.938	0.974	130	US-035	2	0.039	0.030	0.101	0.048	40		
03-033	3	1.089	0.985	0.962	0.976	118	03-033	3	0.075	0.028	0.098	0.066	1		
	Mean	1.080	0.984	0.950	0.975	121		Mean	0.059	0.031	0.100	0.053	19	Positive	Photoreactive
	1	1.068	0.977	0.933	0.965	125		1	0.053	0.028	0.121	0.043	43	,	
US-036	2	1.063	0.990	0.938	0.984	115	US-036	2	0.044	0.032	0.102	0.048	34		
08-036	3	1.072	0.988	0.951	0.977	111	08-030	3	0.062	0.029	0.104	0.072	18		
	Mean	1.067	0.985	0.941	0.975	117		Mean	0.053	0.030	0.109	0.054	32	Positive	Photoreactive
Mean for 3 a	ssays	-	-	-	-	127	Mean for 3 a	issays	-	-	-	-	34	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Bithionol

Solubility

Singlet oxygen 200 µM: Solution Superoxide anion 200 µM: Precipitation 20 µM: Not determined 2 μM: Not determined 20 µM: Solution 2 μM: Not determined

Test concentration

Singlet oxygen 200 μΜ Superoxide anion 20 μM

			Singlet oxy	/gen						Superoxide	anion			1	luda amant
		A440	(-)	A440(+)				A560	(-)	A560((+)		J	Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.979	1.017	0.886	1.007	84		1	0.061	0.029	0.106	0.051	19		
110 002	2	0.997	1.028	0.907	1.021	81	110 020	2	0.058	0.030	0.109	0.053	25		
US-002	3	0.994	1.031	0.906	1.020	79	US-028	3	0.063	0.028	0.107	0.061	18		
	Mean	0.990	1.025	0.900	1.016	81		Mean	0.060	0.029	0.107	0.055	21	Positive	Photoreactive
	1	0.989	0.998	0.855	0.987	125		1	0.070	0.029	0.115	0.047	23		
US-004	2	0.996	1.027	0.880	1.019	106	US-030	2	0.060	0.043	0.120	0.051	39		
08-004	3	1.003	1.021	0.884	1.010	109	08-030	3	0.073	0.030	0.115	0.066	21		
	Mean	0.996	1.015	0.873	1.005	113		Mean	0.068	0.034	0.116	0.055	28	Positive	Photoreactive
	1	0.976	0.980	0.847	0.971	118		1	0.074	0.034	0.114	0.045	18		
US-028	2	0.968	0.988	0.856	0.977	102	US-035	2	0.063	0.030	0.114	0.048	29		
08-028	3	0.986	0.995	0.855	0.983	121	08-033	3	0.064	0.028	0.112	0.066	26		
	Mean	0.977	0.988	0.852	0.977	114		Mean	0.067	0.031	0.113	0.053	24	Positive	Photoreactive
Mean for 3 a	ssays	-	-	=	-	103	Mean for 3 a	assays	-	-	-	-	24	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory :

Chemical Name : Hexachlorophene

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20 \mu M$: Not determined $2 \mu M$: Not determined $20 \mu M$: Not determined $2 \mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

			Singlet oxy	ygen						Superoxide	anion				Judgement
		A440	(-)	A440	(+)				A560	(-)	A560((+)	_		Juagement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.958	1.014	0.622	1.006	325		1	0.085	0.033	0.095	0.046	-3		
US-001	2	0.968	1.028	0.642	1.014	315	US-001	2	0.063	0.046	0.096	0.053	19		
08-001	3	0.975	1.029	0.651	1.020	313	US-001	3	0.084	0.034	0.099	0.056	1		
	Mean	0.967	1.024	0.638	1.013	318		Mean	0.077	0.038	0.097	0.052	6	Positive	Photoreactive
	1	0.973	1.008	0.615	0.991	344		1	0.068	0.033	0.096	0.039	21		
US-023	2	0.955	1.024	0.619	1.013	322	US-023	2	0.055	0.049	0.086	0.044	24		
US-023	3	0.963	1.022	0.616	1.008	332	US-023	3	0.071	0.029	0.098	0.051	20		
	Mean	0.964	1.018	0.617	1.004	333		Mean	0.065	0.037	0.093	0.044	22	Positive	Photoreactive
	1	0.912	0.973	0.559	0.960	343		1	0.069	0.030	0.074	0.038	-3		
110.020	2	0.940	0.986	0.577	0.979	352	110.020	2	0.045	0.044	0.078	0.044	24		
US-029	3	0.963	0.987	0.582	0.978	370	US-029	3	0.068	0.029	0.077	0.047	0		
	Mean	0.938	0.982	0.573	0.972	355		Mean	0.061	0.034	0.077	0.043	7	Positive	Photoreactive
Mean for 3 a	assavs	-	_	-	-	335	Mean for 3 a	assavs	_	-	-	-	12	Positive *3	Photoreactive*3

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results <25 and Superoxide results \ge 20, <70 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 1

Chemical Name : Rose bengal

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion				I
		A440	(-)	A4400	(+)				A560	(-)	A560(+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.235	1.014	0.527	1.006	697		1	3.648	0.033	3.165	0.046	No data*4		
US-001	2	1.227	1.028	0.550	1.014	666	US-001	2	3.650	0.046	3.200	0.053	No data*4		
08-001	3	1.249	1.029	0.556	1.020	682	05-001	3	3.634	0.034	3.160	0.056	No data*4		
	Mean	1.237	1.024	0.544	1.013	682		Mean	3.644	0.038	3.175	0.052	No data*4	Positive	Photoreactive
	1	1.255	1.008	0.544	0.991	697		1	3.607	0.033	3.262	0.039	No data*4		
US-023	2	1.260	1.024	0.571	1.013	675	US-023	2	3.630	0.049	3.287	0.044	No data*4		
03-023	3	1.270	1.022	0.574	1.008	682	03-023	3	3.589	0.029	3.211	0.051	No data*4		
	Mean	1.262	1.018	0.563	1.004	685		Mean	3.609	0.037	3.253	0.044	No data*4	Positive	Photoreactive
	1	1.210	0.973	0.511	0.960	689		1	3.667	0.030	3.171	0.038	No data*4		
US-029	2	1.219	0.986	0.547	0.979	662	US-029	2	3.669	0.044	3.266	0.044	No data*4		
03-029	3	1.246	0.987	0.550	0.978	686	03-029	3	3.645	0.029	3.172	0.047	No data*4		
	Mean	1.225	0.982	0.536	0.972	679		Mean	3.660	0.034	3.203	0.043	No data*4	Positive	Photoreactive
Mean for 3 a	ssavs	-	_	_	_	682	Mean for 3 a	assavs	-	-	-	-	No data*4	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
: Mean (Blank before light exposure)

: Mean (Blank before light exposure) : Mean (Blank after light exposure) *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 A560(-) : Absorbance before light exposure at 560 nm

A560(+)

Α

В

: Absorbance before light exposure at 560 nm : Absorbance after light exposure at 560 nm

: Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) *4 : Over the OD criteria

: Mean (Blank after light exposure)

Judged by Original Criteria:

В

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results <25 and Superoxide results \ge 20, <70 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3:} Final judgment based on the mean value of three assays

Laboratory :

Chemical Name : Aspirin

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

20 μ M : Not determined 20 μ M : Not determined 20 μ M : Not determined 2 μ M : Not determined

Test concentration

 $\begin{array}{cc} Singlet\ oxygen & 200\ \mu M \\ Superoxide\ anion & 200\ \mu M \end{array}$

			Singlet oxy	/gen						Superoxide	anion				Judgement
		A440	(-)	A440(+)	_			A560	(-)	A560((+)	_		rudgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.022	1.006	1.012	0.991	-1		1	0.055	0.035	0.054	0.046	-16		
US-007	2	1.023	1.015	1.010	1.005	3	110 007	2	0.039	0.034	0.045	0.054	-9		
05-007	3	1.031	1.010	1.020	1.002	0	US-007	3	0.052	0.033	0.056	0.049	-12		
	Mean	1.026	1.010	1.014	0.999	1		Mean	0.049	0.034	0.052	0.049	-12	Negative	Non-photoreactive
	1	0.977	0.970	0.968	0.965	1		1	0.051	0.033	0.047	0.040	-18		
US-027	2	0.988	0.979	0.975	0.970	5	US-027	2	0.040	0.030	0.044	0.047	-9		
03-027	3	0.996	0.978	0.987	0.969	0	03-027	3	0.053	0.029	0.050	0.046	-17		
	Mean	0.987	0.976	0.977	0.968	2		Mean	0.048	0.030	0.047	0.044	-15	Negative	Non-photoreactive
	1	0.975	0.974	0.962	0.965	4		1	0.038	0.036	0.081	0.049	19		
US-034	2	0.996	1.001	0.982	0.992	5	110.024	2	0.033	0.042	0.062	0.045	5		
05-034	3	0.995	0.994	0.983	0.985	3	US-034	3	0.037	0.029	0.067	0.085	6		
	Mean	0.989	0.990	0.976	0.981	4		Mean	0.036	0.036	0.070	0.060	10	Negative	Non-photoreactive
Mean for 3 a	ssays	-	_	-	-	2	Mean for 3	assays	-	_	-	-	-6	Negative *3	Non-photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 1

Chemical Name : Benzocaine

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion				Judgement
		A440	(-)	A440((+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.029	1.017	1.016	1.007	4		1	0.040	0.031	0.055	0.038	7		
US-002	2	1.039	1.028	1.020	1.021	10	US-002	2	0.035	0.043	0.050	0.041	8		
US-002	3	1.040	1.031	1.025	1.020	5	08-002	3	0.042	0.030	0.061	0.048	12		
	Mean	1.036	1.025	1.020	1.016	6		Mean	0.039	0.035	0.055	0.042	9	Negative	Non-photoreactive
	1	1.000	0.998	0.988	0.987	2		1	0.053	0.029	0.095	0.046	18		
US-004	2	1.024	1.027	1.008	1.019	6	US-004	2	0.041	0.029	0.091	0.059	26		
03-004	3	1.034	1.021	1.022	1.010	2	03-004	3	0.056	0.029	0.096	0.054	15		
	Mean	1.019	1.015	1.006	1.005	3		Mean	0.050	0.029	0.094	0.053	20	Positive	Weakly photoreactive
	1	0.995	0.980	0.987	0.971	-3		1	0.053	0.029	0.076	0.051	-3		
US-028	2	0.997	0.988	0.984	0.977	2	US-028	2	0.041	0.030	0.067	0.053	-1		
US-028	3	1.001	0.995	0.996	0.983	-5	US-028	3	0.052	0.028	0.081	0.061	3		
	Mean	0.998	0.988	0.989	0.977	-2		Mean	0.049	0.029	0.075	0.055	0	Negative	Non-photoreactive
Mean for 3 a	ssays	-	-	-	-	2	Mean for 3 a	issays	-	-	-	-	10	Negative *3	Non-photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)
B : Mean (Blank after light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory : 1

Chemical Name : Erythromycin

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

20 µM: Not determined 2 µM: Not determined 20 µM: Not determined 2 µM: Not determined

Test concentration

 $\begin{array}{cc} Singlet\ oxygen & 200\ \mu M \\ Superoxide\ anion & 200\ \mu M \end{array}$

	·		Singlet oxy	/gen			•	<u> </u>	•	Superoxide	anion	·		T.	udaamant
		A440	(-)	A440((+)				A560	(-)	A560((+)	_		udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by criteria for Proposed Protocol
	1	1.021	1.011	1.024	1.001	-13		1	0.058	0.029	0.085	0.049	4		
US-003	2	1.020	1.028	1.029	1.017	-18	US-003	2	0.051	0.044	0.078	0.052	4		
08-003	3	1.035	1.024	1.040	1.016	-16	08-003	3	0.059	0.030	0.085	0.070	4		
	Mean	1.025	1.021	1.031	1.011	-16		Mean	0.056	0.034	0.082	0.057	4	Negative	Non-photoreactive
	1	0.996	1.014	0.976	1.003	6		1	0.051	0.030	0.073	0.045	6	,	
US-024	2	0.999	1.023	0.980	1.009	5	US-024	2	0.041	0.040	0.069	0.052	11		
US-024	3	1.002	1.023	0.984	1.006	4	US-024	3	0.050	0.029	0.073	0.051	7		
	Mean	0.999	1.020	0.980	1.006	5		Mean	0.047	0.033	0.071	0.049	8	Negative	Non-photoreactive
	1	1.001	0.997	0.994	1.002	9		1	0.046	0.029	0.072	0.047	5	,	
US-030	2	0.995	1.003	0.991	0.996	5	US-030	2	0.041	0.043	0.071	0.051	9		
08-030	3	1.016	1.001	1.006	1.005	10	08-030	3	0.049	0.030	0.075	0.066	5		
	Mean	1.004	1.000	0.997	1.001	8		Mean	0.045	0.034	0.073	0.055	6	Negative	Non-photoreactive
Mean for 3 a	ssavs	_	_	_	_	-1	Mean for 3 a	assays	_	_	_	-	6	Negative *3	Non-photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Penicillin G

Solubility

Singlet oxygen 200 μM: Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

			Singlet oxy	/gen						Superoxide	anion				Judgement
		A440	(-)	A440(+)	_			A560	(-)	A560((+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.046	1.011	1.015	1.001	21		1	0.064	0.029	0.097	0.049	10		
110 002	2	1.036	1.028	1.017	1.017	9	110,002	2	0.049	0.044	0.096	0.052	24		
US-003	3	1.048	1.024	1.017	1.016	21	US-003	3	0.076	0.030	0.097	0.070	-2		
	Mean	1.043	1.021	1.016	1.011	17		Mean	0.063	0.034	0.097	0.057	11	Negative	Non-photoreactive
	1	1.007	1.014	0.987	1.003	6		1	0.078	0.030	0.106	0.045	13		
US-024	2	1.016	1.023	0.994	1.009	8	US-024	2	0.049	0.040	0.110	0.052	46		
03-024	3	1.033	1.023	1.015	1.006	4	03-024	3	0.071	0.029	0.107	0.051	20		
	Mean	1.019	1.020	0.999	1.006	6		Mean	0.066	0.033	0.108	0.049	26	Positive	Weakly photoreactive
	1	1.012	0.997	1.006	1.002	6		1	0.053	0.029	0.110	0.047	36		
US-030	2	1.008	1.003	0.996	0.996	13	US-030	2	0.045	0.043	0.108	0.051	43		
03-030	3	1.014	1.001	1.008	1.005	7	03-030	3	0.049	0.030	0.112	0.066	42		
	Mean	1.011	1.000	1.003	1.001	9		Mean	0.049	0.034	0.110	0.055	40	Positive	Weakly photoreactive
Mean for 3 a	ssays	-	-	-	-	11	Mean for 3	assays	-	-	-	-	26	Positive '	Weakly photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory :

Chemical Name : Phenytoin

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} Singlet\ oxygen & 200\ \mu M \\ Superoxide\ anion & 200\ \mu M \end{array}$

		•	Singlet oxy	gen	·	•			•	Superoxide	anion	·	•		Indoomont
		A440	(-)	A440	(+)	_			A560	(-)	A560((+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.019	1.006	1.006	0.991	2		1	0.047	0.035	0.115	0.046	53		
US-007	2	1.016	1.015	1.006	1.005	-1	US-007	2	0.039	0.034	0.128	0.054	74		
08-007	3	1.025	1.010	1.013	1.002	1	05-007	3	0.046	0.033	0.124	0.049	63		
	Mean	1.020	1.010	1.008	0.999	1		Mean	0.044	0.034	0.122	0.049	63	Positive	Weakly photoreactive
	1	0.999	0.970	0.970	0.965	21		1	0.045	0.033	0.112	0.040	53		
US-027	2	1.006	0.979	0.982	0.970	17	US-027	2	0.044	0.030	0.118	0.047	60		
03-027	3	1.011	0.978	0.982	0.969	20	03-027	3	0.044	0.029	0.111	0.046	53		
	Mean	1.005	0.976	0.978	0.968	19		Mean	0.044	0.030	0.114	0.044	55	Positive	Weakly photoreactive
	1	0.985	0.982	0.975	0.975	1		1	0.040	0.034	0.095	0.045	33		
US-035	2	0.996	0.985	0.982	0.974	5	US-035	2	0.034	0.030	0.093	0.048	36		
08-033	3	1.001	0.985	0.989	0.976	2	08-033	3	0.050	0.028	0.099	0.066	27		
	Mean	0.994	0.984	0.982	0.975	3		Mean	0.042	0.031	0.096	0.053	32	Positive	Weakly photoreactive
Mean for 3 a	ssavs	-	_	_	_	8	Mean for 3	assavs	-	_	_	-	50	Positive	*3 Weakly photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory

Chemical Name Bumetrizole

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 µM: Solution 20 μM: Precipitation

2 μM: Not determined 2 μM : Solution

Test concentration

Singlet oxygen 20 μM Superoxide anion $2 \mu M$

			Singlet oxy	/gen						Superoxide	anion			1	udgement
		A440	(-)	A440(+)	_			A560	(-)	A560((+)			uugement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.041	0.970	1.041	0.965	-8		1	0.047	0.033	0.053	0.040	-9		
110 027	2	1.081	0.979	1.079	0.970	-5	US-027	2	0.040	0.030	0.048	0.047	-6		
US-027	3	1.086	0.978	1.085	0.969	-7	US-027	3	0.048	0.029	0.053	0.046	-9		
	Mean	1.069	0.976	1.068	0.968	-7		Mean	0.045	0.030	0.051	0.044	-8	Inconclusive	(Non-photoreactive)
	1	1.031	0.974	1.031	0.965	-9		1	0.039	0.036	0.067	0.049	4		
US-034	2	1.038	1.001	1.040	0.992	-11	US-034	2	0.036	0.042	0.072	0.045	12		
03-034	3	1.038	0.994	1.041	0.985	-12	03-034	3	0.040	0.029	0.076	0.085	12		
	Mean	1.036	0.990	1.037	0.981	-11		Mean	0.038	0.036	0.072	0.060	9	Inconclusive	(Non-photoreactive)
	1	1.041	0.977	1.040	0.965	-8		1	0.037	0.028	0.053	0.043	-8		
US-036	2	1.050	0.990	1.054	0.984	-14	US-036	2	0.035	0.032	0.056	0.048	-3		
03-030	3	1.051	0.988	1.052	0.977	-11	03-030	3	0.037	0.029	0.053	0.072	-7		
	Mean	1.048	0.985	1.049	0.975	-11		Mean	0.036	0.030	0.054	0.054	-6	Inconclusive	(Non-photoreactive)
Mean for 3 a	ssays	-	-	-	-	-10	Mean for 3	assays	-	-	-	-	-2	Inconclusive *3	(Non-photoreactive)*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Camphor sulfonic acid

Solubility

Singlet oxygen 200 μM: Solution Superoxide anion 200 µM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

		·	Singlet oxy	/gen	·				·	Superoxide	anion	·			udaamant
		A440	(-)	A440((+)				A560	(-)	A560(+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.038	1.020	1.017	1.010	10		1	0.039	0.031	0.057	0.044	-4		
110.000	2	1.039	1.026	1.030	1.011	-2	110 000	2	0.034	0.031	0.056	0.048	-1		
US-006	3	1.054	1.017	1.031	1.008	12 US-006 3	3	0.041	0.031	0.057	0.069	-7			
	Mean	1.044	1.021	1.026	1.010	7		Mean	0.038	0.031	0.057	0.054	-4	Negative	Non-photoreactive
	1	0.976	0.973	0.977	0.965	-9		1	0.060	0.032	0.050	0.040	-22	,	
US-026	2	0.994	0.982	0.979	0.977	7	US-026	2	0.043	0.038	0.051	0.049	-4		
03-020	3	0.993	0.986	0.988	0.976	-3	03-020	3	0.061	0.029	0.062	0.046	-11		
	Mean	0.988	0.981	0.981	0.973	-2		Mean	0.055	0.033	0.054	0.045	-12	Negative	Non-photoreactive
	1	1.001	0.987	0.977	0.976	12		1	0.075	0.028	0.068	0.045	-27	,	
US-032	2	1.004	0.988	0.990	0.975	2	US-032	2	0.043	0.045	0.057	0.045	-6		
US-032	3	1.014	1.007	0.993	0.995	9	US-032	3	0.073	0.028	0.061	0.072	-32		
	Mean	1.006	0.994	0.987	0.982	8		Mean	0.064	0.034	0.062	0.054	-22	Negative	Non-photoreactive
Mean for 3 a	issays	-	-	-	-	4	Mean for 3 a	assays	-	-	-	-	-13	Negative *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm : Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

A440(-)

A440(+)

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 1

Chemical Name : Chlorhexidine

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM : Solution 20 μM : Not determined 20 μM : Not determined 2 μM : Not determined

Test concentration

 $\begin{array}{cc} Singlet\ oxygen & 200\ \mu M \\ Superoxide\ anion & 200\ \mu M \end{array}$

			Singlet oxy	/gen						Superoxide	anion				Judgement
		A440	(-)	A440((+)	_			A560	(-)	A560	(+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.911	1.006	0.906	0.991	-6		1	0.044	0.035	0.086	0.046	26		
110.007	2	0.964	1.015	0.958	1.005	-5	110 007	2	0.046	0.034	0.096	0.054	35		
US-007	3	0.983	1.010	0.975	1.002	-3 US-007	3	0.046	0.033	0.084	0.049	23			
	Mean	0.953	1.010	0.947	0.999	-5		Mean	0.045	0.034	0.088	0.049	28	Positive	Weakly photoreactive
	1	0.880	0.970	0.865	0.965	7		1	0.051	0.033	0.103	0.040	38		
US-027	2	0.925	0.979	0.909	0.970	8	US-027	2	0.049	0.030	0.099	0.047	36		
03-027	3	0.937	0.978	0.921	0.969	8	03-027	3	0.052	0.029	0.098	0.046	32		
	Mean	0.914	0.976	0.898	0.968	8		Mean	0.051	0.030	0.100	0.044	35	Positive	Weakly photoreactive
	1	0.882	0.982	0.882	0.975	-9		1	0.049	0.034	0.079	0.045	8		
US-035	2	0.917	0.985	0.922	0.974	-13	US-035	2	0.048	0.030	0.076	0.048	6		
US-033	3	0.932	0.985	0.937	0.976	-14	03-033	3	0.048	0.028	0.075	0.066	5		
	Mean	0.910	0.984	0.913	0.975	-12		Mean	0.048	0.031	0.077	0.053	6	Negative	Non-photoreactive
Mean for 3 a	ssays	-	-	-	-	-3	Mean for 3	assays	-	-	-	-	23	Positive *	Weakly photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm

A440(+) : Absorbance after light exposure at 440 nm

A560(-) : Absorbance after light exposure at 560 nn

A : Mean (Blank before light exposure)

B : Mean (Blank after light exposure)

B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory

Chemical Name Cinnamic acid

Solubility

Singlet oxygen 200 μM: Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

		·	Singlet oxy	/gen	·					Superoxide	anion	·			Indoomont
		A440	(-)	A440((+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.022	1.011	1.001	1.001	11		1	0.056	0.029	0.135	0.049	56		
110 002	2	1.030	1.028	1.025	1.017	-5	110 002	2	0.033	0.044	0.141	0.052	84		
US-003	3	1.054	1.024	1.033	1.016	11 US-003 3	3	0.059	0.030	0.124	0.070	42			
	Mean	1.036	1.021	1.020	1.011	6		Mean	0.049	0.034	0.133	0.057	61	Positive	Weakly photoreactive
	1	1.034	1.014	1.020	1.003	0		1	0.062	0.030	0.129	0.045	51		
US-024	2	1.026	1.023	1.013	1.009	-1	US-024	2	0.031	0.040	0.151	0.052	104		
03-024	3	1.039	1.023	1.025	1.006	0	03-024	3	0.062	0.029	0.131	0.051	54		
	Mean	1.033	1.020	1.020	1.006	0		Mean	0.052	0.033	0.137	0.049	70	Positive	Photoreactive
	1	1.012	0.986	1.002	0.973	0		1	0.062	0.029	0.102	0.042	27		
US-031	2	1.008	0.985	0.997	0.979	1	US-031	2	0.040	0.042	0.098	0.046	46		
08-031	3	1.015	0.995	1.006	0.985	-1	08-031	3	0.058	0.029	0.105	0.049	34		
	Mean	1.012	0.989	1.002	0.979	0		Mean	0.053	0.033	0.102	0.046	36	Positive	Weakly photoreactive
Mean for 3 a	ssays	-	-	-	-	2	Mean for 3 a	assays	-	-	-	-	56	Positive *	Weakly photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 *2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure)

: Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 1

Chemical Name : Drometrizole

Solubility

Singlet oxygen 200 μM : Precipitation Superoxide anion 200 μM : Precipitation 20 μM : Solution 20 μM : Solution 2 μM: Not determined 2 μM: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 20 \ \mu\text{M} \\ \text{Superoxide anion} & 20 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion			T.	.daamant
		A440	(-)	A4400	(+)				A560	(-)	A560	(+)			ıdgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	l Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.036	0.990	1.015	0.969	0		1	0.064	0.029	0.071	0.046	-14		
110 025	2	1.028	1.013	0.999	0.988	7	110 025	2	0.045	0.047	0.057	0.047	-9		
US-025	3	1.045	1.011	1.010	0.993	13	US-025	3	0.065	0.030	0.078	0.073	-9		
	Mean	1.036	1.005	1.008	0.983	7		Mean	0.058	0.035	0.069	0.056	-11	Inconclusive	Non-photoreactive
	1	0.984	0.987	0.979	0.976	-7		1	0.037	0.028	0.068	0.045	11		
US-032	2	0.990	0.988	0.976	0.975	2	US-032	2	0.034	0.045	0.066	0.045	12		
08-032	3	0.991	1.007	0.986	0.995	-7	US-032	3	0.038	0.028	0.074	0.072	15		
	Mean	0.988	0.994	0.980	0.982	-4		Mean	0.037	0.034	0.069	0.054	13	Inconclusive	Non-photoreactive
	1	0.976	0.982	0.972	0.972	-8		1	0.055	0.033	0.073	0.041	-2		
110.022	2	0.996	0.989	0.991	0.975	-7	110.022	2	0.047	0.034	0.056	0.051	-10		
US-033	3	1.005	0.987	0.998	0.975	-5	US-033	3	0.058	0.028	0.068	0.064	-11		
	Mean	0.992	0.986	0.987	0.974	-7		Mean	0.053	0.032	0.066	0.052	-8	Inconclusive	Non-photoreactive
Mean for 3 a	ssays	-	_	-	-	-1	Mean for 3	assays	-	-	-	-	-2	Inconclusive *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm A5
A440(+) : Absorbance after light exposure at 440 nm A5
A : Mean (Blank before light exposure) A
B : Mean (Blank after light exposure) B

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory

Chemical Name L-Histidine

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

			Singlet oxy	/gen						Superoxide	anion				Indoomont
		A440	(-)	A440(+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.979	0.980	0.952	0.971	16		1	0.031	0.029	0.116	0.051	59		
110.020	2	0.979	0.988	0.962	0.977	6	110 020	2	0.030	0.030	0.118	0.053	62		
US-028	3	0.986	0.995	0.961	0.983	15		3	0.032	0.028	0.119	0.061	61		
	Mean	0.981	0.988	0.958	0.977	12		Mean	0.031	0.029	0.117	0.055	61	Positive	Weakly photoreactive
	1	0.986	0.997	0.972	1.002	15		1	0.033	0.029	0.129	0.047	76		
US-030	2	0.994	1.003	0.978	0.996	16	US-030	2	0.031	0.043	0.119	0.051	67		
03-030	3	0.996	1.001	0.982	1.005	15	03-030	3	0.034	0.030	0.131	0.066	76		
	Mean	0.992	1.000	0.977	1.001	15		Mean	0.032	0.034	0.126	0.055	73	Positive	Photoreactive
	1	0.985	0.982	0.969	0.975	7		1	0.056	0.034	0.115	0.045	37		
110.025	2	0.993	0.985	0.977	0.974	7	110.025	2	0.029	0.030	0.111	0.048	60		
US-035	3	0.997	0.985	0.983	0.976	6	US-035	3	0.033	0.028	0.111	0.066	56		
	Mean	0.992	0.984	0.976	0.975	7		Mean	0.039	0.031	0.112	0.053	51	Positive	Weakly photoreactive
Mean for 3 a	ssays	-	-	-	-	11	Mean for 3 a	assays	-	_	-	-	62	Positive *	Weakly photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Methylbenzylidene camphor

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 µM: Solution 20 µM: Solution 2 µM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 20 μM Superoxide anion 20 μM

•	·	•	Singlet oxy	ygen	·		•			Superoxide	anion	·		т	udaamant
		A440	(-)	A440(+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.985	0.973	0.988	0.965	-11		1	0.047	0.032	0.051	0.040	-8		
115.026	2	0.994	0.982	0.987	0.977	-1	110.026	2	0.032	0.038	0.043	0.049	-1		
US-026	3	0.995	0.986	0.997	0.976	-9		3	0.049	0.029	0.052	0.046	-9		
	Mean	0.991	0.981	0.991	0.973	-7		Mean	0.043	0.033	0.049	0.045	-6	Inconclusive	Non-photoreactive
	1	0.968	0.974	0.961	0.965	-2		1	0.031	0.036	0.061	0.049	6		
US-034	2	0.981	1.001	0.975	0.992	-3	US-034	2	0.030	0.042	0.052	0.045	-2		
US-034	3	0.978	0.994	0.972	0.985	-3	US-034	3	0.032	0.029	0.067	0.085	11		
	Mean	0.976	0.990	0.969	0.981	-3		Mean	0.031	0.036	0.060	0.060	5	Inconclusive	Non-photoreactive
	1	0.971	0.977	0.965	0.965	-4		1	0.041	0.028	0.064	0.043	-1		
US-036	2	0.981	0.990	0.973	0.984	-2	US-036	2	0.032	0.032	0.051	0.048	-6		
US-036	3	0.982	0.988	0.978	0.977	-6	US-036	3	0.043	0.029	0.063	0.072	-4		
	Mean	0.978	0.985	0.972	0.975	-4		Mean	0.039	0.030	0.060	0.054	-4	Inconclusive	Non-photoreactive
Mean for 3 a	ssays	-	-	-	-	-5	Mean for 3 a	assays	-	-	-	-	-2	Inconclusive *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory :

Chemical Name : Octrizole

Solubility

Singlet oxygen 200 μM : Precipitation Superoxide anion 200 μM : Precipitation 20 μM : Precipitation 2 μM : Solution 20 μM : Precipitation 2 μM : Solution

Test concentration

 $\begin{array}{ccc} Singlet\ oxygen & 2\ \mu M \\ Superoxide\ anion & 2\ \mu M \end{array}$

	·		Singlet oxy	/gen		•			•	Superoxide	anion	·	•		Judgement
		A440	(-)	A440((+)	_			A560	(-)	A560((+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.003	0.973	0.989	0.965	6		1	0.039	0.032	0.105	0.040	54		
US-026	2	0.999	0.982	0.988	0.977	3	110.026	2	0.036	0.038	0.094	0.049	46		
US-026	3	1.009	0.986	0.999	0.976	US-026	3	0.041	0.029	0.121	0.046	67			
	Mean	1.004	0.981	0.992	0.973	4		Mean	0.039	0.033	0.106	0.045	56	Positive	(Weakly photoreactive)
	1	0.977	0.987	0.978	0.976	-13		1	0.041	0.028	0.113	0.045	52		
US-032	2	0.992	0.988	0.973	0.975	6	US-032	2	0.035	0.045	0.089	0.045	34		
US-032	3	0.992	1.007	0.992	0.995	-12	US-032	3	0.038	0.028	0.114	0.072	56		
	Mean	0.987	0.994	0.981	0.982	-6		Mean	0.038	0.034	0.106	0.054	47	Positive	(Weakly photoreactive)
	1	0.984	0.982	0.969	0.972	3		1	0.037	0.033	0.082	0.041	25		
US-033	2	0.987	0.989	0.971	0.975	4	US-033	2	0.035	0.034	0.071	0.051	16		
08-033	3	0.992	0.987	0.984	0.975	-4	08-033	3	0.040	0.028	0.085	0.064	25		
	Mean	0.987	0.986	0.975	0.974	1		Mean	0.037	0.032	0.079	0.052	22	Positive	(Weakly photoreactive)
Mean for 3 a	assays	-	_	_	_	0	Mean for 3 a	assavs	_	_	_	-	42	Positive	*3 (Weakly photoreactive)*3

В

B : Mean (Blank after light exposure)

. Wear (Blank after fight e

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

: Mean (Blank after light exposure)

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3:} Final judgment based on the mean value of three assays

Laboratory :

Chemical Name : Octyl methacrylate

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

•			Singlet oxy	/gen	·					Superoxide	anion	·			Judgement
		A440	(-)	A440((+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.028	1.014	0.994	1.006	24		1	0.067	0.033	0.070	0.046	-10		
US-001	2	1.034	1.028	1.011	1.014	12	US-001	2	0.044	0.046	0.059	0.053	1		
08-001	3	1.049	1.029	1.022	1.020	16	08-001	3	0.062	0.034	0.077	0.056	1		
	Mean	1.037	1.024	1.009	1.013	17		Mean	0.058	0.038	0.069	0.052	-3	Negative	Non-photoreactive
	1	1.053	1.008	1.014	0.991	25		1	0.086	0.033	0.066	0.039	-27		
US-023	2	1.047	1.024	1.008	1.013	26	US-023	2	0.071	0.049	0.052	0.044	-27		
03-023	3	1.053	1.022	1.012	1.008	27	03-023	3	0.083	0.029	0.070	0.051	-20		
	Mean	1.051	1.018	1.011	1.004	26		Mean	0.080	0.037	0.063	0.044	-25	Positive	Photoreactive
	1	1.031	0.973	0.967	0.960	54		1	0.091	0.030	0.055	0.038	-45		
US-029	2	1.036	0.986	0.975	0.979	51	US-029	2	0.073	0.044	0.050	0.044	-32		
08-029	3	1.044	0.987	0.983	0.978	51	08-029	3	0.090	0.029	0.061	0.047	-38		
	Mean	1.037	0.982	0.975	0.972	52		Mean	0.085	0.034	0.055	0.043	-38	Positive	Photoreactive
Mean for 3 a	issays	-	-	-	-	32	Mean for 3 a	issays	-	-	-	-	-22	Positive *3	Photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)
B : Mean (Blank after light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory

Chemical Name Octyl methoxycinnamate

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 µM: Solution 20 µM: Solution 2 µM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 20 μM Superoxide anion 20 μM

•		•	Singlet oxy	/gen			•	·	•	Superoxide	anion			т	udaamant
		A440	(-)	A440(+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.990	0.970	0.977	0.965	5		1	0.072	0.033	0.068	0.040	-18		
110.027	2	1.001	0.979	0.989	0.970	5	110 027	2	0.067	0.030	0.067	0.047	-14		
US-027	3	1.007	0.978	0.991	0.969	8		3	0.073	0.029	0.069	0.046	-18		
	Mean	0.999	0.976	0.985	0.968	6		Mean	0.070	0.030	0.068	0.044	-17	Inconclusive	Non-photoreactive
	1	1.008	0.974	0.998	0.965	1		1	0.081	0.036	0.079	0.049	-27		
US-034	2	1.021	1.001	1.010	0.992	3	US-034	2	0.063	0.042	0.099	0.045	12		
US-034	3	1.032	0.994	1.021	0.985	3	US-034	3	0.082	0.029	0.076	0.085	-30		
	Mean	1.021	0.990	1.010	0.981	2		Mean	0.075	0.036	0.085	0.060	-15	Inconclusive	Non-photoreactive
	1	1.012	0.977	0.993	0.965	9		1	0.061	0.028	0.073	0.043	-12		
110.026	2	1.017	0.990	0.999	0.984	8	110.026	2	0.058	0.032	0.070	0.048	-12		
US-036	3	1.018	0.988	1.010	0.977	-1	US-036	3	0.059	0.029	0.074	0.072	-9		
	Mean	1.016	0.985	1.000	0.975	5		Mean	0.059	0.030	0.072	0.054	-11	Inconclusive	Non-photoreactive
Mean for 3 a	issays	-	-	-	-	4	Mean for 3 a	assays	-	-	-	-	-14	Inconclusive *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Octyl salicylate

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 µM: Solution 20 µM: Solution 2 µM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 20 μM Superoxide anion 20 μM

			Singlet oxy	/gen	·					Superoxide	anion			т.	udaamant
		A440	(-)	A4400	(+)				A560	(-)	A560((+)		J	udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.026	1.014	1.013	1.003	-1		1	0.054	0.030	0.081	0.045	11		
US-024	2	1.027	1.023	1.011	1.009	3	US-024	2	0.041	0.040	0.067	0.052	10		
05-024	3	1.040	1.023	1.026	1.006	-1	US-024	3	0.054	0.029	0.084	0.051	14		
	Mean	1.031	1.020	1.017	1.006	0		Mean	0.050	0.033	0.077	0.049	12	Inconclusive	Non-photoreactive
	1	1.019	0.997	1.005	1.002	15		1	0.061	0.029	0.086	0.047	4		
US-030	2	1.014	1.003	1.003	0.996	13	US-030	2	0.048	0.043	0.065	0.051	-4		
03-030	3	1.022	1.001	1.010	1.005	13	03-030	3	0.058	0.030	0.086	0.066	7		
	Mean	1.018	1.000	1.006	1.001	14		Mean	0.056	0.034	0.079	0.055	2	Inconclusive	Non-photoreactive
	1	0.996	0.982	0.985	0.975	3		1	0.042	0.034	0.067	0.045	2	,	
US-035	2	0.990	0.985	0.982	0.974	-1	US-035	2	0.042	0.030	0.063	0.048	-1		
08-033	3	1.016	0.985	1.003	0.976	5	08-033	3	0.042	0.028	0.068	0.066	3		
	Mean	1.001	0.984	0.990	0.975	2		Mean	0.042	0.031	0.066	0.053	1	Inconclusive	Non-photoreactive
Mean for 3 a	ssays	-	-	-	-	5	Mean for 3	assays	-	-	-	-	5	Inconclusive *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 1

Chemical Name : PABA

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20 \mu M$: Not determined $2 \mu M$: Not determined $2 \mu M$: Not determined $2 \mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

•			Singlet oxy	/gen	·				•	Superoxide	anion	·			ludgement
		A440	(-)	A440((+)				A560	(-)	A560((+)			ruagement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.021	1.015	0.994	1.004	17		1	0.038	0.029	0.057	0.043	8		
US-005	2	1.045	1.012	1.014	1.002	20	US-005	2	0.032	0.043	0.051	0.044	9		
08-003	3	1.050	1.016	1.023	1.007	16	08-005	3	0.036	0.029	0.059	0.046	12		
	Mean	1.039	1.015	1.010	1.004	18		Mean	0.035	0.033	0.056	0.044	10	Negative	Non-photoreactive
	1	0.997	0.990	0.985	0.969	-10		1	0.036	0.029	0.052	0.046	-4		
US-025	2	1.003	1.013	0.982	0.988	-1	US-025	2	0.031	0.047	0.048	0.047	-4		
03-023	3	1.004	1.011	0.995	0.993	-13	03-023	3	0.039	0.030	0.052	0.073	-8		
	Mean	1.001	1.005	0.987	0.983	-8		Mean	0.035	0.035	0.051	0.056	-5	Negative	Non-photoreactive
	1	0.998	0.986	0.985	0.973	3		1	0.038	0.029	0.057	0.042	6		
US-031	2	1.006	0.985	0.990	0.979	6	US-031	2	0.033	0.042	0.055	0.046	9		
03-031	3	1.008	0.995	0.993	0.985	5	03-031	3	0.038	0.029	0.059	0.049	8		
	Mean	1.004	0.989	0.989	0.979	5		Mean	0.036	0.033	0.057	0.046	8	Negative	Non-photoreactive
Mean for 3 a	ssays	-	-	-	-	5	Mean for 3 a	issays	-	-	-	-	4	Negative *3	Non-photoreactive*3

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ *1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory

Chemical Name SDS

Solubility

Singlet oxygen 200 µM: Solution Superoxide anion 200 µM: Precipitation 20 μM: Not determined 2 μM: Not determined 20 µM: Solution 2 μM: Not determined

Test concentration

Singlet oxygen 200 μΜ Superoxide anion 20 μM

			Singlet oxy	/gen						Superoxide	anion				udgement
		A440	(-)	A440((+)	_			A560	(-)	A560((+)	_		udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.975	1.015	0.950	1.004	13		1	0.057	0.029	0.089	0.042	19		
US-005	2	1.004	1.012	0.975	1.002	19	110 021	2	0.056	0.042	0.088	0.046	19		
08-005	3	1.020	1.016	0.988	1.007	21	US-031	3	0.059	0.029	0.083	0.049	11		
	Mean	0.999	1.015	0.971	1.004	18		Mean	0.057	0.033	0.087	0.046	16	Inconclusive	Non-photoreactive
	1	0.994	0.990	0.953	0.969	20		1	0.066	0.033	0.088	0.041	2		
US-025	2	0.999	1.013	0.963	0.988	14	US-033	2	0.064	0.034	0.088	0.051	4		
03-023	3	1.004	1.011	0.965	0.993	17	03-033	3	0.066	0.028	0.096	0.064	10		
	Mean	0.999	1.005	0.960	0.983	17		Mean	0.065	0.032	0.091	0.052	5	Inconclusive	Non-photoreactive
	1	0.969	0.986	0.944	0.973	15		1	0.063	0.028	0.091	0.043	3		
US-031	2	0.973	0.985	0.944	0.979	19	US-036	2	0.066	0.032	0.098	0.048	8		
03-031	3	0.982	0.995	0.960	0.985	12	03-030	3	0.064	0.029	0.086	0.072	-2		
	Mean	0.975	0.989	0.949	0.979	15		Mean	0.064	0.030	0.092	0.054	3	Inconclusive	Non-photoreactive
Mean for 3 a	issays	-	-	-	-	17	Mean for 3	assays	-	-	-	-	8	Inconclusive *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name UV-571

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 µM: Solution 2 μM: Not determined 20 μM: Precipitation 2 μM : Solution

Test concentration

Singlet oxygen 20 μM Superoxide anion $2 \mu M$

		·	Singlet oxy	/gen	·					Superoxide	anion	·			udaamant
		A440	(-)	A440((+)				A560	(-)	A560(+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.064	1.014	1.069	1.003	-19		1	0.057	0.030	0.084	0.045	11		
US-024	2	1.062	1.023	1.058	1.009	-10	US-024	2	0.040	0.040	0.070	0.052	14		
05-024	3	1.077	1.023	1.080	1.006	-18	US-024	3	0.066	0.029	0.087	0.051	5		
	Mean	1.068	1.020	1.069	1.006	-16		Mean	0.054	0.033	0.080	0.049	10	Inconclusive	(Non-photoreactive)
	1	1.032	0.982	1.042	0.972	-22		1	0.037	0.033	0.065	0.041	8		
US-033	2	1.058	0.989	1.062	0.975	-16	US-033	2	0.036	0.034	0.056	0.051	0		
03-033	3	1.049	0.987	1.055	0.975	-18	03-033	3	0.039	0.028	0.064	0.064	5		
	Mean	1.046	0.986	1.053	0.974	-19		Mean	0.037	0.032	0.062	0.052	4	Inconclusive	(Non-photoreactive)
	1	1.061	0.977	1.068	0.965	-17		1	0.038	0.028	0.082	0.043	19		
US-036	2	1.053	0.990	1.057	0.984	-14	US-036	2	0.033	0.032	0.060	0.048	3		
08-036	3	1.052	0.988	1.057	0.977	-15	08-030	3	0.039	0.029	0.086	0.072	23		
	Mean	1.055	0.985	1.061	0.975	-15		Mean	0.037	0.030	0.076	0.054	15	Inconclusive	(Non-photoreactive)
Mean for 3 a	ssays	-	_	-	-	-17	Mean for 3 a	assays	-	-	-	-	10	Inconclusive *3	(Non-photoreactive)*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : Acridine

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM : Solution $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{ll} \mbox{Singlet oxygen} & 200 \ \mu\mbox{M} \\ \mbox{Superoxide anion} & 200 \ \mu\mbox{M} \end{array}$

		•	Singlet oxy	gen					•	Superoxide	anion		•		[udaamant
		A440	(-)	A4400	(+)				A560	(-)	A560(+)		J	Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.959	0.982	0.719	0.972	231		1	0.032	0.033	0.250	0.052	200		
EDGC 06	2	0.965	0.977	0.732	0.965	224	EDSC 06	2	0.033	0.034	0.240	0.047	189		
FDSC-06	3	0.964	0.982	0.723	0.976	232	FDSC-06	3	0.032	0.033	0.233	0.055	183		
	Mean	0.963	0.980	0.725	0.971	229		Mean	0.032	0.033	0.241	0.051	191	Positive	Photoreactive
	1	0.955	0.974	0.724	0.967	226		1	0.032	0.033	0.256	0.054	209		
FDSC-15	2	0.962	0.975	0.748	0.971	209	FDSC-15	2	0.032	0.032	0.255	0.048	208		
FDSC-13	3	0.971	0.982	0.747	0.977	219	FDSC-13	3	0.033	0.035	0.259	0.043	211		
	Mean	0.963	0.977	0.740	0.972	218		Mean	0.032	0.033	0.257	0.048	209	Positive	Photoreactive
	1	0.948	0.980	0.714	0.974	228		1	0.034	0.031	0.234	0.040	186		
FDSC-22	2	0.956	0.982	0.755	0.974	195	EDSC 22	2	0.035	0.033	0.242	0.057	193		
FDSC-22	3	0.956	0.991	0.732	0.986	218	FDSC-22	3	0.033	0.032	0.239	0.042	192		
	Mean	0.953	0.984	0.734	0.978	214		Mean	0.034	0.032	0.238	0.046	190	Positive	Photoreactive
Mean for 3 a	ssavs	-	-	_	-	220	Mean for 3	assays	-	-	-	-	197	Positive *3	Photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm

A440(+) : Absorbance after light exposure at 440 nm

A560(-) : Absorbance after light exposure at 560 nn

A : Mean (Blank before light exposure)

B : Mean (Blank after light exposure)

B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : Acridine HCl

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion				I
	_	A440	(-)	A4400	(+)				A560	(-)	A5600	(+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.951	0.972	0.707	0.963	234		1	0.030	0.032	0.233	0.050	186		
FDSC-04	2	0.958	0.970	0.728	0.959	220	FDSC-04	2	0.034	0.032	0.256	0.049	205		
FDSC-04	3	0.951	0.975	0.717	0.963	224	FDSC-04	3	0.031	0.033	0.250	0.049	202		
	Mean	0.953	0.972	0.717	0.962	226		Mean	0.032	0.032	0.246	0.049	198	Positive	Photoreactive
	1	0.946	0.970	0.722	0.970	219		1	0.032	0.034	0.259	0.043	218		
FDSC-13	2	0.964	0.970	0.743	0.962	216	FDSC-13	2	0.034	0.034	0.249	0.043	206		
FDSC-13	3	0.955	0.972	0.736	0.965	214	FDSC-13	3	0.032	0.033	0.252	0.044	211		
	Mean	0.955	0.971	0.734	0.966	216		Mean	0.033	0.034	0.253	0.043	212	Positive	Photoreactive
	1	0.959	0.974	0.684	0.949	256		1	0.032	0.032	0.204	0.046	160		
EDEC 20	2	0.972	0.972	0.745	0.954	208	EDGC 20	2	0.032	0.032	0.218	0.045	174		
FDSC-20	3	0.971	0.980	0.744	0.966	208	FDSC-20	3	0.033	0.034	0.254	0.045	209		
	Mean	0.967	0.975	0.724	0.956	224		Mean	0.032	0.033	0.225	0.045	181	Positive	Photoreactive
Mean for 3 a	ssavs	-	_	_	_	222	Mean for 3 a	assavs	-	_	_	-	197	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 *: A440(-) : Absorbance before light exposure at 440 nm

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results <25 and Superoxide results \ge 20, <70 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Amiodarone HCl

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 µM: Precipitation 20 µM: Precipitation 2 μM : Solution 2 μM : Solution

Test concentration

Singlet oxygen $2 \mu M$ Superoxide anion $2 \mu M$

	·	•	Singlet oxy	/gen	·		•			Superoxide	anion			1	[udaamant
		A440	(-)	A440((+)				A560	(-)	A560((+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.985	0.982	0.950	0.976	26		1	0.034	0.032	0.055	0.047	2		
FDSC-10	2	0.988	0.992	0.951	0.975	28	EDGC 10	2	0.033	0.032	0.056	0.053	4		
FDSC-10	3	0.990	0.987	0.961	0.984	20	FDSC-10	3	0.033	0.034	0.055	0.055	3		
	Mean	0.988	0.987	0.954	0.978	25		Mean	0.033	0.033	0.055	0.052	3	Positive	(Photoreactive)
	1	0.985	0.986	0.939	0.996	46		1	0.033	0.031	0.049	0.041	5	,	
FDSC-16	2	0.988	0.982	0.953	0.980	35	FDSC-16	2	0.034	0.032	0.051	0.044	6		
FDSC-16	3	0.989	0.993	0.957	0.986	32	FDSC-16	3	0.035	0.033	0.049	0.043	3		
	Mean	0.987	0.987	0.950	0.987	38		Mean	0.034	0.032	0.050	0.043	5	Positive	(Photoreactive)
	1	0.965	0.957	0.928	0.946	27		1	0.033	0.032	0.046	0.059	-5		
FDSC-23	2	0.977	0.960	0.937	0.947	30	EDGC 22	2	0.035	0.032	0.050	0.045	-3		
FDSC-23	3	0.975	0.965	0.938	0.959	27	FDSC-23	3	0.034	0.033	0.045	0.045	-7		
	Mean	0.972	0.961	0.934	0.951	28		Mean	0.034	0.032	0.047	0.050	-5	Positive	(Photoreactive)
Mean for 3 a	ssays	-	-	=	-	30	Mean for 3 a	assays	-	_	-	-	1	Positive *3	(Photoreactive)*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : Chlorpromazine HCl

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

	·	•	Singlet oxy	/gen	·	•			•	Superoxide	anion	·	•		Indoomont
		A440	(-)	A440(+)				A560	(-)	A560	(+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.954	0.970	0.961	0.966	-8		1	0.038	0.032	0.147	0.048	93		
FDSC-05	2	0.972	0.966	0.969	0.973	2	FDSC-05	2	0.033	0.032	0.147	0.051	98		
FDSC-05	3	0.962	0.975	0.961	0.968	0	FD8C-05	3	0.034	0.032	0.150	0.046	100		
	Mean	0.963	0.970	0.964	0.969	-2		Mean	0.035	0.032	0.148	0.048	97	Positive	Photoreactive
	1	0.953	0.971	0.958	0.960	-15		1	0.031	0.032	0.143	0.044	99		
FDSC-14	2	0.960	0.968	0.965	0.959	-15	FDSC-14	2	0.033	0.033	0.143	0.050	97		
FDSC-14	3	0.960	0.974	0.960	0.963	-10	FDSC-14	3	0.036	0.033	0.150	0.045	101		
	Mean	0.958	0.971	0.961	0.961	-13		Mean	0.033	0.033	0.145	0.046	99	Positive	Photoreactive
	1	0.939	0.959	0.944	0.967	-7		1	0.032	0.031	0.147	0.043	106		
FDSC-21	2	0.956	0.958	0.960	0.953	-6	EDSC 21	2	0.032	0.032	0.145	0.041	104		
FDSC-21	3	0.946	0.963	0.950	0.955	-6	FDSC-21	3	0.032	0.035	0.158	0.042	117		
	Mean	0.947	0.960	0.951	0.958	-6		Mean	0.032	0.033	0.150	0.042	109	Positive	Photoreactive
Mean for 3 a	ssavs	-	-	_	-	-7	Mean for 3	assays	-	-	_	_	102	Positive *3	Photoreactive*3

В

A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

: Mean (Blank after light exposure)

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Doxycycline HCl

Solubility

Singlet oxygen 200 μM: Superoxide anion

Solution 200 μM: Solution 20 μM: Not determined 20 μM: Not determined

2 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

			Singlet oxy	/gen					·	Superoxide	anion	·			Indoomont
		A440	(-)	A440(+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.952	0.982	0.717	0.972	226		1	0.038	0.033	0.463	0.052	407		
EDEC 06	2	0.964	0.977	0.733	0.965	222	EDGC 06	2	0.038	0.034	0.466	0.047	410		
FDSC-06	3	0.964	0.982	0.738	0.976	217	FDSC-06	3	0.039	0.033	0.480	0.055	423		
	Mean	0.960	0.980	0.729	0.971	222		Mean	0.038	0.033	0.470	0.051	413	Positive	Photoreactive
	1	0.940	0.971	0.688	0.960	242		1	0.041	0.032	0.485	0.044	431		
FDSC-14	2	0.950	0.968	0.711	0.959	229	FDSC-14	2	0.040	0.033	0.488	0.050	435		
FDSC-14	3	0.956	0.974	0.716	0.963	230	FDSC-14	3	0.041	0.033	0.500	0.045	446		
	Mean	0.949	0.971	0.705	0.961	234		Mean	0.041	0.033	0.491	0.046	437	Positive	Photoreactive
	1	0.934	0.959	0.705	0.967	227		1	0.040	0.031	0.453	0.043	404		
EDGG 21	2	0.951	0.958	0.731	0.953	218	EDGG 21	2	0.040	0.032	0.459	0.041	410		
FDSC-21	3	0.947	0.963	0.725	0.955	220	FDSC-21	3	0.041	0.035	0.468	0.042	418		
	Mean	0.944	0.960	0.720	0.958	222		Mean	0.040	0.033	0.460	0.042	411	Positive	Photoreactive
Mean for 3 a	issays	-	-	-	-	226	Mean for 3 a	assays	-	-	-	-	420	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Fenofibrate

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 µM: Precipitation 2 μM : Solution 20 µM: Precipitation 2 μM : Solution

Test concentration

Singlet oxygen $2 \mu M$ Superoxide anion $2 \mu M$

			Singlet oxy	/gen						Superoxide	anion			1	udgement
		A440	(-)	A440((+)				A560	(-)	A560((+)	_		uugement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.975	0.982	0.960	0.976	6		1	0.033	0.032	0.044	0.047	-8		
FDSC-10	2	0.989	0.992	0.971	0.975	9	EDGC 10	2	0.032	0.032	0.046	0.053	-5		
FDSC-10	3	0.985	0.987	0.977	0.984	-1	FDSC-10	3	0.032	0.034	0.045	0.055	-6		
	Mean	0.983	0.987	0.969	0.978	5		Mean	0.032	0.033	0.045	0.052	-6	Inconclusive	(Non-photoreactive)
	1	0.972	0.986	0.954	0.996	18		1	0.032	0.031	0.046	0.041	3		
FDSC-16	2	0.976	0.982	0.957	0.980	19	FDSC-16	2	0.031	0.032	0.059	0.044	17		
FDSC-10	3	0.981	0.993	0.963	0.986	18	FDSC-10	3	0.032	0.033	0.075	0.043	32		
	Mean	0.976	0.987	0.958	0.987	18		Mean	0.032	0.032	0.060	0.043	17	Inconclusive	(Non-photoreactive)
	1	0.958	0.957	0.938	0.946	10		1	0.031	0.032	0.040	0.059	-9		
FDSC-23	2	0.965	0.960	0.940	0.947	15	FDSC-23	2	0.031	0.032	0.041	0.045	-8		
FDSC-23	3	0.969	0.965	0.950	0.959	9	FDSC-23	3	0.032	0.033	0.041	0.045	-9		
	Mean	0.964	0.961	0.943	0.951	11		Mean	0.031	0.032	0.041	0.050	-9	Inconclusive	(Non-photoreactive)
Mean for 3 a	ssays	-	-	-	-	11	Mean for 3	assays	-	-	-	-	1	Inconclusive *3	(Non-photoreactive)*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 *2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-)

: Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Α

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Furosemide

Solubility

Singlet oxygen 200 μM: Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

		•	Singlet oxy	/gen	·	•				Superoxide	anion				Indeamont
		A440	(-)	A440(+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.958	0.955	0.803	0.948	148		1	0.037	0.033	0.108	0.043	60		
FDSC-01	2	0.978	0.963	0.830	0.956	141	EDGC 01	2	0.038	0.037	0.112	0.050	63		
FDSC-01	3	0.972	0.967	0.839	0.961	126	FDSC-01	3	0.043	0.033	0.117	0.042	63		
	Mean	0.969	0.962	0.824	0.955	138		Mean	0.039	0.034	0.112	0.045	62	Positive	Photoreactive
	1	0.962	0.967	0.815	0.961	140		1	0.038	0.033	0.119	0.049	66		
FDSC-12	2	0.965	0.962	0.829	0.954	129	FDSC-12	2	0.036	0.035	0.113	0.050	62		
FDSC-12	3	0.963	0.967	0.832	0.959	124	FDSC-12	3	0.040	0.033	0.127	0.047	72		
	Mean	0.963	0.965	0.825	0.958	131		Mean	0.038	0.034	0.120	0.049	67	Positive	Photoreactive
	1	0.972	0.986	0.828	0.990	140		1	0.036	0.033	0.123	0.049	69		
EDGC 10	2	0.970	0.981	0.832	0.975	134	EDGC 10	2	0.034	0.032	0.118	0.054	66		
FDSC-19	3	0.969	0.991	0.841	0.982	124	FDSC-19	3	0.035	0.033	0.118	0.050	65		
	Mean	0.970	0.986	0.834	0.982	133		Mean	0.035	0.033	0.120	0.051	67	Positive	Photoreactive
Mean for 3 a	issays	-	_	-	-	134	Mean for 3 a	assays	-	-	-	-	65	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Ketoprofen

Solubility

Singlet oxygen 200 μM: Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen Superoxide anion 200 μΜ

200 µM

			Singlet oxy	ygen						Superoxide	anion				I
		A440	(-)	A4400	(+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.976	0.972	0.714	0.963	252		1	0.036	0.032	0.161	0.050	108		
EDGC 04	2	0.982	0.970	0.728	0.959	244	EDGC 04	2	0.034	0.032	0.158	0.049	107		
FDSC-04	3	0.975	0.975	0.725	0.963	240	FDSC-04	3	0.035	0.033	0.159	0.049	107		
	Mean	0.978	0.972	0.722	0.962	245		Mean	0.035	0.032	0.159	0.049	107	Positive	Photoreactive
	1	0.972	0.970	0.696	0.970	271		1	0.035	0.034	0.160	0.043	116		
FDSC-13	2	0.969	0.970	0.702	0.962	262	FDSC-13	2	0.035	0.034	0.159	0.043	115		
FDSC-13	3	0.965	0.972	0.716	0.965	244	FDSC-13	3	0.034	0.033	0.162	0.044	119		
	Mean	0.969	0.971	0.705	0.966	259		Mean	0.035	0.034	0.160	0.043	117	Positive	Photoreactive
	1	0.926	0.974	0.663	0.949	244		1	0.034	0.032	0.151	0.046	105		
FDSC-20	2	0.932	0.972	0.677	0.954	236	FDSC-20	2	0.034	0.032	0.158	0.045	112		
FDSC-20	3	0.936	0.980	0.677	0.966	240	FDSC-20	3	0.036	0.034	0.159	0.045	111		
	Mean	0.931	0.975	0.672	0.956	240		Mean	0.035	0.033	0.156	0.045	109	Positive	Photoreactive
Mean for 3 a	ssavs	-	-	-	-	248	Mean for 3 a	assays	-	_	_	-	111	Positive *5	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 A440(-)

: Absorbance before light exposure at 440 nm : Absorbance after light exposure at 440 nm : Mean (Blank before light exposure) : Mean (Blank after light exposure)

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$ A560(-) : Absorbance before light exposure at 560 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure)

Judged by Original Criteria:

A440(+)

Α

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name 6-methylcoumarine

Solubility

Singlet oxygen 200 μM: Superoxide anion 200 μM:

Solution Solution 20 μM: Not determined 20 μM: Not determined

Α

В

2 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 µM Superoxide anion 200 μΜ

			Singlet oxy	ygen						Superoxide	anion				Judgement
		A440	(-)	A440	(+)				A560	(-)	A560((+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.961	0.966	0.835	0.962	123		1	0.032	0.033	0.136	0.050	87		
EDGC 02	2	0.963	0.970	0.877	0.968	83	EDGC 02	2	0.032	0.033	0.133	0.050	84		
FDSC-03	3	0.968	0.974	0.862	0.970	103	FDSC-03	3	0.034	0.035	0.141	0.053	90		
	Mean	0.964	0.970	0.858	0.967	103		Mean	0.033	0.034	0.137	0.051	87	Positive	Photoreactive
	1	0.969	0.967	0.851	0.961	111		1	0.033	0.033	0.157	0.049	109		
FDSC-12	2	0.975	0.962	0.842	0.954	126	FDSC-12	2	0.032	0.035	0.157	0.050	110		
FDSC-12	3	0.974	0.967	0.839	0.959	128	FDSC-12	3	0.033	0.033	0.160	0.047	112		
	Mean	0.973	0.965	0.844	0.958	122		Mean	0.033	0.034	0.158	0.049	110	Positive	Photoreactive
	1	0.967	0.986	0.818	0.990	145		1	0.032	0.033	0.146	0.049	96		
EDGG 10	2	0.978	0.981	0.833	0.975	141	EDGC 10	2	0.031	0.032	0.149	0.054	100		
FDSC-19	3	0.978	0.991	0.834	0.982	140	FDSC-19	3	0.031	0.033	0.152	0.050	103		
	Mean	0.974	0.986	0.828	0.982	142		Mean	0.031	0.033	0.149	0.051	100	Positive	Photoreactive
Mean for 3 a	assavs	-	_	-	-	122	Mean for 3	assavs	_	_	-	-	99	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

: Absorbance before light exposure at 440 nm : Absorbance after light exposure at 440 nm : Mean (Blank before light exposure) : Mean (Blank after light exposure)

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank after light exposure)

Judged by Original Criteria:

A440(-)

A440(+)

Α

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name 8-MOP

Solubility

Singlet oxygen 200 μM: Solution Superoxide anion 200 µM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

			Singlet oxy	/gen	·					Superoxide	anion			-	udaamant
		A440	(-)	A4400	(+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.963	0.972	0.868	0.963	85		1	0.032	0.032	0.135	0.050	86		
FDSC-04	2	0.971	0.970	0.887	0.959	74	EDSC 04	2	0.033	0.032	0.135	0.049	85		
FDSC-04	3	0.968	0.975	0.874	0.963	84	FDSC-04	3	0.033	0.033	0.141	0.049	91		
	Mean	0.967	0.972	0.876	0.962	81		Mean	0.033	0.032	0.137	0.049	87	Positive	Photoreactive
	1	0.966	0.970	0.877	0.970	84		1	0.033	0.034	0.140	0.043	98		
FDSC-13	2	0.969	0.970	0.885	0.962	79	FDSC-13	2	0.033	0.034	0.146	0.043	104		
FDSC-13	3	0.963	0.972	0.885	0.965	73	FDSC-13	3	0.033	0.033	0.149	0.044	107		
	Mean	0.966	0.971	0.882	0.966	79		Mean	0.033	0.034	0.145	0.043	103	Positive	Photoreactive
	1	0.939	0.974	0.843	0.949	77		1	0.033	0.032	0.136	0.046	91		
FDSC-20	2	0.951	0.972	0.902	0.954	30	EDEC 20	2	0.032	0.032	0.130	0.045	86		
FDSC-20	3	0.954	0.980	0.863	0.966	72	FDSC-20	3	0.033	0.034	0.145	0.045	100		
	Mean	0.948	0.975	0.869	0.956	60		Mean	0.033	0.033	0.137	0.045	92	Positive	Photoreactive
Mean for 3 a	ssays	-	-	-	-	73	Mean for 3	assays	-	-	-	-	94	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Nalidixic acid

Solubility

Singlet oxygen 200 μM: Solution Superoxide anion 200 μM: Solution

20 μM: Not determined

20 μM: Not determined 2 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

		·	Singlet oxy	/gen	·				·	Superoxide	anion				ludaamant
		A440	(-)	A440((+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.947	0.955	0.790	0.948	150		1	0.032	0.033	0.323	0.043	280		
FDSC-01	2	0.966	0.963	0.812	0.956	147	FDSC-01	2	0.032	0.037	0.262	0.050	219		
FDSC-01	3	0.970	0.967	0.818	0.961	145	FDSC-01	3	0.033	0.033	0.308	0.042	264		
	Mean	0.961	0.962	0.807	0.955	147		Mean	0.032	0.034	0.298	0.045	254	Positive	Photoreactive
	1	0.961	0.967	0.804	0.961	150		1	0.033	0.033	0.265	0.049	217		
FDSC-12	2	0.963	0.962	0.814	0.954	142	FDSC-12	2	0.034	0.035	0.230	0.050	181		
FDSC-12	3	0.966	0.967	0.819	0.959	140	FDSC-12	3	0.034	0.033	0.270	0.047	221		
	Mean	0.963	0.965	0.812	0.958	144		Mean	0.034	0.034	0.255	0.049	206	Positive	Photoreactive
	1	0.971	0.986	0.818	0.990	149		1	0.032	0.033	0.317	0.049	267	,	
FDSC-19	2	0.973	0.981	0.824	0.975	145	FDSC-19	2	0.032	0.032	0.285	0.054	235		
FD3C-19	3	0.977	0.991	0.832	0.982	141	FDSC-19	3	0.033	0.033	0.304	0.050	253		
	Mean	0.974	0.986	0.825	0.982	145		Mean	0.032	0.033	0.302	0.051	252	Positive	Photoreactive
Mean for 3 a	ssays	-	-	-	-	145	Mean for 3 a	assays	-	-	-	-	237	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Nalidixic acid (Na salt)

Solubility

Singlet oxygen 200 μM: Superoxide anion

Solution 200 µM: Solution 20 μM: Not determined 20 μM: Not determined

Α

В

2 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

			Singlet oxy	/gen	·			<u> </u>	•	Superoxide	anion		•		Indeamont
		A440	(-)	A440(+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.972	0.974	0.814	0.967	153		1	0.032	0.033	0.252	0.054	205		
EDCC 15	2	0.976	0.975	0.829	0.971	142	EDGC 15	2	0.031	0.032	0.282	0.048	236		
FDSC-15	3	0.979	0.982	0.836	0.977	138	FDSC-15	3	0.032	0.035	0.261	0.043	214		
	Mean	0.976	0.977	0.826	0.972	144		Mean	0.032	0.033	0.265	0.048	218	Positive	Photoreactive
	1	0.958	0.980	0.809	0.974	143		1	0.031	0.031	0.214	0.040	169		
FDSC-22	2	0.958	0.982	0.813	0.974	139	FDSC-22	2	0.033	0.033	0.234	0.057	187		
FDSC-22	3	0.966	0.991	0.822	0.986	138	FD5C-22	3	0.031	0.032	0.266	0.042	221		
	Mean	0.961	0.984	0.815	0.978	140		Mean	0.032	0.032	0.238	0.046	192	Positive	Photoreactive
	1	0.962	0.959	0.800	0.954	156		1	0.033	0.037	0.270	0.042	226		
FDSC-26	2	0.959	0.955	0.805	0.949	148	EDGC 26	2	0.033	0.033	0.253	0.050	209		
FDSC-26	3	0.962	0.964	0.812	0.956	144	FDSC-26	3	0.034	0.033	0.242	0.043	197		
	Mean	0.961	0.959	0.806	0.953	149		Mean	0.033	0.034	0.255	0.045	211	Positive	Photoreactive
Mean for 3 a	issays	-	_	-	-	144	Mean for 3 a	assays	-	-	-	-	207	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm A440(+): Absorbance after light exposure at 440 nm : Mean (Blank before light exposure) : Mean (Blank after light exposure)

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A560(-)

: Absorbance before light exposure at 560 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank after light exposure)

Judged by Original Criteria:

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Norfloxacin

Solubility

Singlet oxygen 200 μM: Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

		·	Singlet oxy	/gen	·					Superoxide	anion				ludaamant
		A440	(-)	A440((+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.985	0.967	0.755	0.961	223		1	0.033	0.033	0.169	0.049	121		
FDSC-12	2	0.986	0.962	0.804	0.954	175	EDGC 12	2	0.033	0.035	0.182	0.050	134		
FDSC-12	3	0.977	0.967	0.803	0.959	167	FDSC-12	3	0.034	0.033	0.190	0.047	141		
	Mean	0.983	0.965	0.787	0.958	188		Mean	0.033	0.034	0.180	0.049	132	Positive	Photoreactive
	1	0.976	0.986	0.745	0.990	227		1	0.032	0.033	0.153	0.049	103	,	
FDSC-19	2	0.977	0.981	0.756	0.975	217	FDSC-19	2	0.032	0.032	0.172	0.054	122		
FDSC-19	3	0.980	0.991	0.755	0.982	221	FDSC-19	3	0.033	0.033	0.185	0.050	134		
	Mean	0.978	0.986	0.752	0.982	222		Mean	0.032	0.033	0.170	0.051	120	Positive	Photoreactive
	1	0.956	0.959	0.751	0.954	199		1	0.033	0.037	0.159	0.042	115	,	
FDSC-26	2	0.956	0.955	0.747	0.949	203	EDGC 26	2	0.032	0.033	0.162	0.050	119		
FDSC-26	3	0.963	0.964	0.759	0.956	198	FDSC-26	3	0.033	0.033	0.166	0.043	122		
	Mean	0.958	0.959	0.752	0.953	200		Mean	0.033	0.034	0.162	0.045	119	Positive	Photoreactive
Mean for 3 a	ssays	-	_	-	-	203	Mean for 3 a	assays	-	-	-	-	124	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Ofloxacin

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

		•	Singlet oxy	/gen		•		<u> </u>		Superoxide	anion	·			Indoomont
		A440	(-)	A440((+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.973	0.982	0.826	0.972	138		1	0.032	0.033	0.338	0.052	288		
FDSC-06	2	0.975	0.977	0.839	0.965	127	FDSC-06	2	0.034	0.034	0.322	0.047	270		
FDSC-06	3	0.979	0.982	0.839	0.976	131	FDSC-06	3	0.032	0.033	0.356	0.055	306		
	Mean	0.976	0.980	0.835	0.971	132		Mean	0.033	0.033	0.339	0.051	288	Positive	Photoreactive
	1	0.967	0.971	0.813	0.960	144		1	0.032	0.032	0.327	0.044	282		
FDSC-14	2	0.974	0.968	0.830	0.959	134	FDSC-14	2	0.035	0.033	0.329	0.050	281		
FDSC-14	3	0.976	0.974	0.832	0.963	134	FD5C-14	3	0.033	0.033	0.359	0.045	313		
	Mean	0.972	0.971	0.825	0.961	137		Mean	0.033	0.033	0.338	0.046	292	Positive	Photoreactive
	1	0.963	0.959	0.784	0.967	177		1	0.033	0.031	0.368	0.043	326		
FDSC-21	2	0.977	0.958	0.837	0.953	138	FDSC-21	2	0.034	0.032	0.272	0.041	229		
FDSC-21	3	0.970	0.963	0.836	0.955	132	FDSC-21	3	0.033	0.035	0.363	0.042	321		
	Mean	0.970	0.960	0.819	0.958	149		Mean	0.033	0.033	0.334	0.042	292	Positive	Photoreactive
Mean for 3 a	ssays	-	-	-	-	139	Mean for 3 a	assays	-	-	-	-	291	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 A440(-)

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm : Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

A440(+)

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Piroxicam

Solubility

Singlet oxygen 200 µM: Solution

20 µM: Not determined 2 µM: Not determined 20 µM: Solution 2 μM: Not determined

Α

В

Superoxide anion 200 µM: Precipitation

Test concentration

Singlet oxygen 200 μM Superoxide anion 20 μM

•	<u> </u>		Singlet oxy	gen						Superoxide	anion	·			[udaamant
		A440	(-)	A440((+)				A560	(-)	A560((+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.964	0.970	0.745	0.966	218		1	0.039	0.032	0.114	0.052	52		
FDSC-05	2	0.966	0.966	0.764	0.973	201	EDGC 00	2	0.038	0.032	0.118	0.057	57		
FDSC-05	3	0.965	0.975	0.762	0.968	202	FDSC-09	3	0.038	0.032	0.121	0.055	60		
	Mean	0.965	0.970	0.757	0.969	207		Mean	0.038	0.032	0.118	0.055	56	Positive	Photoreactive
	1	0.998	0.984	0.751	0.975	241		1	0.038	0.032	0.096	0.053	40	,	
FDSC-09	2	0.992	0.984	0.762	0.980	224	FDSC-17	2	0.037	0.033	0.102	0.052	47		
FDSC-09	3	0.995	0.994	0.763	0.987	226	FDSC-17	3	0.037	0.032	0.108	0.046	53		
	Mean	0.995	0.987	0.759	0.981	230		Mean	0.037	0.032	0.102	0.050	47	Positive	Photoreactive
	1	0.989	0.981	0.752	0.977	234	'	1	0.040	0.032	0.094	0.043	41		
FDSC-17	2	0.995	0.989	0.777	0.984	215	EDGC 10	2	0.038	0.032	0.094	0.047	43		
FDSC-1/	3	0.988	0.995	0.771	0.993	214	FDSC-18	3	0.039	0.033	0.096	0.045	44		
	Mean	0.991	0.988	0.767	0.985	221		Mean	0.039	0.032	0.095	0.045	43	Positive	Photoreactive
Mean for 3 a	ssavs	-	_	-	-	219	Mean for 3 a	assays	_	_	-	-	49	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm A440(+): Absorbance after light exposure at 440 nm : Mean (Blank before light exposure) В : Mean (Blank after light exposure)

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : Promethazine HCl

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

		•	Singlet oxy	/gen	·	•			•	Superoxide	anion		•		Indoomont
		A440	(-)	A440(+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.959	0.970	0.869	0.966	89		1	0.033	0.032	0.092	0.048	43		
EDGC 05	2	0.966	0.966	0.873	0.973	92	EDGC 05	2	0.033	0.032	0.090	0.051	41		
FDSC-05	3	0.966	0.975	0.874	0.968	91	FDSC-05	3	0.035	0.032	0.095	0.046	44		
	Mean	0.964	0.970	0.872	0.969	91		Mean	0.034	0.032	0.092	0.048	43	Positive	Photoreactive
	1	0.950	0.971	0.851	0.960	89		1	0.031	0.032	0.094	0.044	50		
FDSC-14	2	0.974	0.968	0.878	0.959	86	FDSC-14	2	0.034	0.033	0.094	0.050	47		
FDSC-14	3	0.970	0.974	0.869	0.963	91	FDSC-14	3	0.032	0.033	0.100	0.045	55		
	Mean	0.965	0.971	0.866	0.961	89		Mean	0.032	0.033	0.096	0.046	51	Positive	Photoreactive
	1	0.948	0.959	0.845	0.967	101		1	0.031	0.031	0.085	0.043	45		
EDGC 21	2	0.964	0.958	0.858	0.953	104	EDGC 21	2	0.032	0.032	0.088	0.041	47		
FDSC-21	3	0.961	0.963	0.856	0.955	103	FDSC-21	3	0.032	0.035	0.092	0.042	51		
	Mean	0.958	0.960	0.853	0.958	103		Mean	0.032	0.033	0.088	0.042	48	Positive	Photoreactive
Mean for 3 a	issays	-	_	-	-	94	Mean for 3 a	assays	-	-	-	-	47	Positive *3	Photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory

Chemical Name Rosiglitazone

Solubility

Singlet oxygen 200 μM: Superoxide anion

Solution

20 µM: Not determined 2 μM: Not determined 20 µM: Solution

Α

В

200 µM: Precipitation

2 μM: Not determined

Test concentration

Singlet oxygen 200 μΜ Superoxide anion 20 μM

			Singlet oxy	/gen						Superoxide	anion				Judgement
	_	A440	(-)	A440((+)	_			A560	(-)	A560	(+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.955	0.982	0.860	0.972	86		1	0.036	0.032	0.080	0.052	21		/
FDSC-06	2	0.936	0.977	0.837	0.965	90	FDSC-09	2	0.036	0.032	0.096	0.057	37		
FDSC-06	3	0.943	0.982	0.840	0.976	94	FDSC-09	3	0.037	0.032	0.083	0.055	23		
	Mean	0.945	0.980	0.846	0.971	90		Mean	0.036	0.032	0.086	0.055	27	Positive	
	1	0.967	0.984	0.879	0.975	82	'	1	0.037	0.032	0.081	0.053	26		
FDSC-09	2	0.967	0.984	0.874	0.980	87	FDSC-17	2	0.036	0.033	0.083	0.052	29		
FDSC-09	3	0.963	0.994	0.864	0.987	93	FDSC-17	3	0.037	0.032	0.088	0.046	33		
	Mean	0.966	0.987	0.872	0.981	87		Mean	0.037	0.032	0.084	0.050	29	Positive	
	1	0.946	0.981	0.862	0.977	81		1	0.037	0.032	0.086	0.043	36		/
FDSC-17	2	0.973	0.989	0.871	0.984	99	EDGC 10	2	0.037	0.032	0.082	0.047	32		
FDSC-1/	3	0.965	0.995	0.863	0.993	99	FDSC-18	3	0.036	0.033	0.085	0.045	36		
	Mean	0.961	0.988	0.865	0.985	93		Mean	0.037	0.032	0.084	0.045	35	Positive	
Mean for 3 a	ssavs	-	_	_	-	90	Mean for 3 a	assavs	_	_	-	_	30	Positive *3	3 /

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm A440(+): Absorbance after light exposure at 440 nm : Mean (Blank before light exposure) : Mean (Blank after light exposure)

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank after light exposure)

Judged by Original Criteria:

Α

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Tetracycline

Solubility

Singlet oxygen Superoxide anion

200 μM: Solution 200 μM: Solution 20 μM: Not determined 20 μM: Not determined

2 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

		•	Singlet oxy	/gen	·	•				Superoxide	anion	·	•		Indoomont
		A440	(-)	A440(+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.968	0.970	0.792	0.966	175		1	0.039	0.032	0.289	0.048	234		
EDGC 05	2	0.995	0.966	0.829	0.973	165	EDGC 05	2	0.042	0.032	0.299	0.051	241		
FDSC-05	3	0.992	0.975	0.829	0.968	162	FDSC-05	3	0.040	0.032	0.301	0.046	245		
	Mean	0.985	0.970	0.817	0.969	167		Mean	0.040	0.032	0.296	0.048	240	Positive	Photoreactive
	1	0.964	0.974	0.793	0.967	166		1	0.040	0.033	0.305	0.054	250		
FDSC-15	2	0.971	0.975	0.809	0.971	157	FDSC-15	2	0.042	0.032	0.314	0.048	257		
FDSC-13	3	0.986	0.982	0.823	0.977	158	FDSC-13	3	0.043	0.035	0.316	0.043	258		
	Mean	0.974	0.977	0.808	0.972	160		Mean	0.042	0.033	0.312	0.048	255	Positive	Photoreactive
	1	0.961	0.980	0.783	0.974	172		1	0.040	0.031	0.291	0.040	237		
EDGC 22	2	0.973	0.982	0.806	0.974	161	FDSC-22	2	0.046	0.033	0.297	0.057	237		
FDSC-22	3	0.981	0.991	0.809	0.986	166	FDSC-22	3	0.038	0.032	0.296	0.042	244		
	Mean	0.972	0.984	0.799	0.978	166		Mean	0.041	0.032	0.295	0.046	239	Positive	Photoreactive
Mean for 3 a	issays	-	_	-	-	164	Mean for 3 a	assays	-	-	-	-	245	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

: Mean (Blank after light exposure)

: Absorbance before light exposure at 440 nm : Absorbance after light exposure at 440 nm : Mean (Blank before light exposure)

A560(-) A560(+)Α В

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 560 nm : Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank after light exposure)

Judged by Original Criteria:

A440(-)

A440(+)

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : Anthracene

Solubility

Singlet oxygen 200 μM : Precipitation Superoxide anion 200 μM : Precipitation 20 μM : Precipitation 20 μM : Precipitation 2 μM : Solution 2 μM : Solution

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 2 \ \mu\text{M} \\ \text{Superoxide anion} & 2 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion			,	ludaamant
		A440	(-)	A440(+)	_			A560	(-)	A560((+)	_		ludgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.982	0.982	0.977	0.976	-4		1	0.033	0.032	0.054	0.047	2		
EDSC 10	2	0.989	0.992	0.979	0.975	1	EDGC 10	2	0.036	0.032	0.059	0.053	4		
FDSC-10	3	0.994	0.987	0.987	0.984	-2	FDSC-10	3	0.033	0.034	0.055	0.055	3		
	Mean	0.988	0.987	0.981	0.978	-2		Mean	0.034	0.033	0.056	0.052	3	Inconclusive	(Non-photoreactive)
	1	0.981	0.986	0.976	0.996	5		1	0.032	0.031	0.050	0.041	7		
FDSC-16	2	0.986	0.982	0.978	0.980	8	FDSC-16	2	0.032	0.032	0.053	0.044	10		
FDSC-16	3	0.992	0.993	0.985	0.986	7	FDSC-16	3	0.033	0.033	0.052	0.043	8		
	Mean	0.986	0.987	0.980	0.987	7		Mean	0.032	0.032	0.052	0.043	8	Inconclusive	(Non-photoreactive)
	1	0.968	0.957	0.953	0.946	5		1	0.033	0.032	0.049	0.059	-2		
FDSC-23	2	0.972	0.960	0.956	0.947	6	FDSC-23	2	0.032	0.032	0.048	0.045	-2		
FDSC-23	3	0.978	0.965	0.962	0.959	6	FDSC-23	3	0.033	0.033	0.047	0.045	-4		
	Mean	0.973	0.961	0.957	0.951	6		Mean	0.033	0.032	0.048	0.050	-3	Inconclusive	(Non-photoreactive)
Mean for 3 a	ssays	-	-	-	-	4	Mean for 3	assays	-	_	-	-	3	Inconclusive *3	(Non-photoreactive)*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm A560(-)
A440(+) : Absorbance after light exposure at 440 nm A560(+)
A : Mean (Blank before light exposure) A
B : Mean (Blank after light exposure) B

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

: Absorbance before light exposure at 560 nm : Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : Avobenzone

Solubility

Singlet oxygen 200 μM : Precipitation Superoxide anion 200 μM : Precipitation 20 μM : Precipitation 2 μM : Solution 20 μM : Precipitation 2 μM : Solution

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 2 \ \mu\text{M} \\ \text{Superoxide anion} & 2 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion				Judgement
		A440	(-)	A440((+)				A560	(-)	A560	(+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.986	0.982	0.975	0.976	2		1	0.033	0.032	0.080	0.047	28		
FDSC-10	2	0.992	0.992	0.979	0.975	4	EDGC 10	2	0.034	0.032	0.084	0.053	31		
FDSC-10	3	0.989	0.987	0.985	0.984	-5	FDSC-10	3	0.033	0.034	0.081	0.055	29		
	Mean	0.989	0.987	0.980	0.978	0		Mean	0.033	0.033	0.082	0.052	29	Positive	(Weakly photoreactive)
	1	0.979	0.986	0.966	0.996	13		1	0.033	0.031	0.079	0.041	35		
FDSC-16	2	0.980	0.982	0.972	0.980	8	FDSC-16	2	0.033	0.032	0.081	0.044	37		
FDSC-10	3	0.989	0.993	0.973	0.986	16	FDSC-10	3	0.034	0.033	0.081	0.043	36		
	Mean	0.983	0.987	0.970	0.987	12		Mean	0.033	0.032	0.080	0.043	36	Positive	(Weakly photoreactive)
	1	0.970	0.957	0.951	0.946	9		1	0.034	0.032	0.080	0.059	28		
FDSC-23	2	0.983	0.960	0.958	0.947	15	FDSC-23	2	0.035	0.032	0.082	0.045	29		
FDSC-23	3	0.983	0.965	0.966	0.959	7	FDSC-23	3	0.045	0.033	0.080	0.045	17		
	Mean	0.979	0.961	0.958	0.951	10		Mean	0.038	0.032	0.081	0.050	25	Positive	(Weakly photoreactive)
Mean for 3 a	ssays	-	-	-	-	7	Mean for 3	assays	-	-	-	-	30	Positive	*3 (Weakly photoreactive)*3

A440(+) : Absorbance defore light exposure at 440 nm

A440(+) : Absorbance after light exposure at 440 nm

A : Mean (Blank before light exposure)

B : Mean (Blank after light exposure)

B : Mean (Blank after light exposure)

B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : Bithionol

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM : Precipitation $20 \ \mu M$: Not determined $2 \ \mu M$: Not determined $20 \ \mu M$: Precipitation $2 \ \mu M$: Solution

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 2 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion				T., J.,
		A440	(-)	A440	(+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.935	0.966	0.795	0.962	137		1	0.034	0.031	0.064	0.049	11		
EDEC 02	2	0.948	0.970	0.809	0.968	136	FDSC-11	2	0.033	0.032	0.067	0.055	15		
FDSC-03	3	0.944	0.974	0.802	0.970	139	FDSC-11	3	0.034	0.034	0.067	0.050	14		
	Mean	0.942	0.970	0.802	0.967	137		Mean	0.034	0.032	0.066	0.051	13	Positive	Photoreactive
	1	0.954	0.984	0.806	0.975	142	,	1	0.035	0.032	0.068	0.053	15		
FDSC-09	2	0.946	0.984	0.798	0.980	142	FDSC-17	2	0.035	0.033	0.068	0.052	15		
FD3C-09	3	0.966	0.994	0.815	0.987	145	FDSC-17	3	0.035	0.032	0.067	0.046	14		
	Mean	0.955	0.987	0.806	0.981	143		Mean	0.035	0.032	0.068	0.050	15	Positive	Photoreactive
	1	0.950	0.977	0.803	0.965	139		1	0.034	0.032	0.068	0.043	21		
EDGC 11	2	0.965	0.972	0.817	0.967	140	FDGG 10	2	0.034	0.032	0.059	0.047	12		
FDSC-11	3	0.952	0.979	0.802	0.971	142	FDSC-18	3	0.034	0.033	0.060	0.045	13		
	Mean	0.956	0.976	0.807	0.968	140		Mean	0.034	0.032	0.062	0.045	15	Positive	Photoreactive
Mean for 3 a	ssays	-	-	-	-	140	Mean for 3 a	assays	-	-	-	-	14	Positive *3	Photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Hexachlorophene

Solubility

Singlet oxygen Superoxide anion

200 μM: Solution 200 µM: Precipitation 20 µM: Not determined 20 μM: Precipitation

2 μM: Not determined 2 μM : Solution

Test concentration

Singlet oxygen 200 μM Superoxide anion 2 μΜ

			Singlet oxy	/gen	·	•	•	<u> </u>	•	Superoxide	anion	·	•		ludaamant
		A440	(-)	A440(+)				A560	(-)	A560((+)			ludgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.921	0.964	0.659	0.953	252		1	0.033	0.031	0.046	0.049	-6		
FDSC-02	2	0.928	0.971	0.671	0.964	247	EDCC 11	2	0.034	0.032	0.047	0.055	-6		
FDSC-02	3	0.918	0.978	0.668	0.965	240	FDSC-11	3	0.035	0.034	0.048	0.050	-6		
	Mean	0.922	0.971	0.666	0.961	246		Mean	0.034	0.032	0.047	0.051	-6	Positive	Photoreactive
	1	0.929	0.984	0.669	0.975	254		1	0.035	0.032	0.069	0.053	16		
FDSC-09	2	0.941	0.984	0.678	0.980	257	FDSC-17	2	0.035	0.033	0.066	0.052	13		
FDSC-09	3	0.944	0.994	0.683	0.987	255	FDSC-17	3	0.035	0.032	0.068	0.046	15		
	Mean	0.938	0.987	0.677	0.981	255		Mean	0.035	0.032	0.068	0.050	15	Positive	Photoreactive
	1	0.921	0.977	0.656	0.965	257		1	0.034	0.032	0.044	0.043	-3		
EDGC 11	2	0.924	0.972	0.658	0.967	258	EDCC 10	2	0.033	0.032	0.043	0.047	-3		
FDSC-11	3	0.932	0.979	0.665	0.971	259	FDSC-18	3	0.034	0.033	0.043	0.045	-4		
	Mean	0.926	0.976	0.660	0.968	258		Mean	0.034	0.032	0.043	0.045	-3	Positive	Photoreactive
Mean for 3 a	issays	-	_	-	-	253	Mean for 3 a	assays	-	_	-	-	2	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Rose bengal

Solubility

Singlet oxygen Superoxide anion

200 μM: Solution 200 μM: Solution 20 μM: Not determined 20 μM: Not determined

A560(+)

Α

В

2 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

			Singlet oxy	/gen	·			<u> </u>	•	Superoxide	anion	·	•	•	Indoomont
		A440	(-)	A440(+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.247	0.964	0.607	0.953	630		1	3.498	0.032	3.334	0.041	No data*4		
FDSC-02	2	1.259	0.971	0.618	0.964	631	EDGC 02	2	3.460	0.034	3.338	0.041	No data*4		
FDSC-02	3	1.258	0.978	0.617	0.965	631	FDSC-02	3	3.566	0.038	3.374	0.081	No data*4		
	Mean	1.255	0.971	0.614	0.961	631		Mean	3.508	0.035	3.349	0.054	No data*4	Positive	Photoreactive
	1	1.241	0.967	0.607	0.961	627		1	OVER	0.033	3.747	0.049	No data*4		
FDSC-12	2	1.267	0.962	0.626	0.954	634	FDSC-12	2	OVER	0.035	OVER	0.050	No data*4		
FDSC-12	3	1.276	0.967	0.629	0.959	640	FDSC-12	3	OVER	0.033	3.943	0.047	No data*4		
	Mean	1.261	0.965	0.621	0.958	634		Mean	#DIV/0!	0.034	3.845	0.049	No data*4	Positive	Photoreactive
	1	1.254	0.986	0.576	0.990	674		1	OVER	0.033	3.513	0.049	No data*4		
FDSC-19	2	1.250	0.981	0.583	0.975	663	FDSC-19	2	OVER	0.032	3.467	0.054	No data*4		
FDSC-19	3	1.253	0.991	0.585	0.982	664	FDSC-19	3	OVER	0.033	3.424	0.050	No data*4		
	Mean	1.252	0.986	0.581	0.982	667		Mean	#DIV/0!	0.033	3.468	0.051	No data*4	Positive	Photoreactive
Mean for 3 a	issays	-	-	-	-	644	Mean for 3 a	assays	-	-	-	-	No data*4	Positive *3	Photoreactive*3

OVER: Sptical dencity was not measurable because it was more thant 4.0.

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 A440(-)

: Absorbance before light exposure at 440 nm : Absorbance after light exposure at 440 nm

: Mean (Blank before light exposure) В : Mean (Blank after light exposure)

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A560(-)

: Absorbance before light exposure at 560 nm

: Absorbance after light exposure at 560 nm : Mean (Blank before light exposure)

*4: Over the OD criteria

Judged by Original Criteria:

A440(+)

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

: Mean (Blank after light exposure) Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : Aspirin

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

•		•	Singlet oxy	/gen	·	•	•			Superoxide	anion	·	•		udgement
		A440	(-)	A440((+)				A560	(-)	A560((+)			uagement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.957	0.955	0.949	0.948	1		1	0.034	0.033	0.049	0.043	4		
FDSC-01	2	0.979	0.963	0.969	0.956	3	EDGC 01	2	0.035	0.037	0.045	0.050	-1		
FDSC-01	3	0.979	0.967	0.973	0.961	-1	FDSC-01	3	0.035	0.033	0.043	0.042	-3		
	Mean	0.972	0.962	0.964	0.955	1		Mean	0.035	0.034	0.046	0.045	0	Negative	Non-photoreactive
	1	0.962	0.967	0.957	0.961	-2		1	0.033	0.033	0.041	0.049	-7		
FDSC-12	2	0.972	0.962	0.965	0.954	0	FDSC-12	2	0.033	0.035	0.043	0.050	-5		
FD3C-12	3	0.967	0.967	0.961	0.959	-1	FDSC-12	3	0.032	0.033	0.042	0.047	-5		
	Mean	0.967	0.965	0.961	0.958	-1		Mean	0.033	0.034	0.042	0.049	-6	Negative	Non-photoreactive
	1	0.970	0.986	0.965	0.990	1		1	0.031	0.033	0.045	0.049	-4		
FDSC-19	2	0.973	0.981	0.968	0.975	1	EDGC 10	2	0.032	0.032	0.046	0.054	-4		
FDSC-19	3	0.979	0.991	0.974	0.982	1	FDSC-19	3	0.032	0.033	0.046	0.050	-4		
	Mean	0.974	0.986	0.969	0.982	1		Mean	0.032	0.033	0.046	0.051	-4	Negative	Non-photoreactive
Mean for 3 a	ssays	-	-	-	-	0	Mean for 3 a	assays	-	-	-	-	-3	Negative *3	Non-photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)
B : Mean (Blank after light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : Benzocaine

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20 \mu M$: Not determined $2 \mu M$: Not determined $2 \mu M$: Not determined $2 \mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

		•	Singlet oxy	/gen						Superoxide	anion		•	T	udaamant
		A440	(-)	A440(+)				A560	(-)	A560((+)		J	udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.961	0.966	0.952	0.962	6		1	0.033	0.033	0.045	0.050	-5		
EDGC 02	2	0.970	0.970	0.967	0.968	0	EDGC 02	2	0.031	0.033	0.044	0.050	-4		
FDSC-03	3	0.973	0.974	0.950	0.970	20	FDSC-03	3	0.033	0.035	0.046	0.053	-4		
	Mean	0.968	0.970	0.956	0.967	9		Mean	0.032	0.034	0.045	0.051	-4	Negative	Non-photoreactive
	1	0.963	0.970	0.956	0.970	2		1	0.031	0.034	0.054	0.043	14		
FDSC-13	2	0.965	0.970	0.960	0.962	0	FDSC-13	2	0.034	0.034	0.054	0.043	11		
FDSC-13	3	0.962	0.972	0.955	0.965	2	FDSC-13	3	0.032	0.033	0.051	0.044	10		
	Mean	0.963	0.971	0.957	0.966	1		Mean	0.032	0.034	0.053	0.043	12	Negative	Non-photoreactive
	1	0.966	0.974	0.955	0.949	-8		1	0.031	0.032	0.053	0.046	10		
FDSC-20	2	0.973	0.972	0.967	0.954	-13	FDSC-20	2	0.031	0.032	0.051	0.045	8		
FDSC-20	3	0.982	0.980	0.977	0.966	-14	FDSC-20	3	0.033	0.034	0.045	0.045	0		
	Mean	0.974	0.975	0.966	0.956	-12		Mean	0.032	0.033	0.050	0.045	6	Negative	Non-photoreactive
Mean for 3 a	ssays	-	-	-	-	-1	Mean for 3 a	assays	-	-	-	-	5	Negative *3	Non-photoreactive*3

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm A : Mean (Blank before light exposure) B : Mean (Blank after light exposure)

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Erythromycin

Solubility

Singlet oxygen 200 μM: Solution Superoxide anion 200 μM:

Solution

20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

•		•	Singlet oxy	/gen				<u> </u>		Superoxide	anion	·		1	lu da am ant
		A440	(-)	A440(+)				A560	(-)	A560(+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.980	0.982	0.967	0.972	4		1	0.039	0.033	0.064	0.052	7		
EDGC 06	2	0.958	0.977	0.946	0.965	3	EDGC 06	2	0.037	0.034	0.069	0.047	14		
FDSC-06	3	0.975	0.982	0.956	0.976	10	FDSC-06	3	0.035	0.033	0.073	0.055	20		
	Mean	0.971	0.980	0.956	0.971	6		Mean	0.037	0.033	0.069	0.051	14	Negative	Non-photoreactive
	1	0.960	0.971	0.950	0.960	0		1	0.034	0.032	0.052	0.044	5		
FDSC-14	2	0.977	0.968	0.968	0.959	-1	FDSC-14	2	0.035	0.033	0.052	0.050	4		
FDSC-14	3	0.974	0.974	0.966	0.963	-2	FDSC-14	3	0.036	0.033	0.053	0.045	4		
	Mean	0.970	0.971	0.961	0.961	-1		Mean	0.035	0.033	0.052	0.046	4	Negative	Non-photoreactive
	1	0.948	0.959	0.929	0.967	17	'	1	0.037	0.031	0.083	0.043	37		
FDSC-21	2	0.963	0.958	0.950	0.953	11	FDSC-21	2	0.036	0.032	0.073	0.041	28		
FDSC-21	3	0.967	0.963	0.954	0.955	11	FDSC-21	3	0.036	0.035	0.085	0.042	40		
	Mean	0.959	0.960	0.944	0.958	13		Mean	0.036	0.033	0.080	0.042	35	Positive	Weakly photoreactive
Mean for 3 a	issays	-	-	-	-	6	Mean for 3 a	assays	-	-	-	-	18	Negative *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm A440(+): Absorbance after light exposure at 440 nm : Mean (Blank before light exposure) В : Mean (Blank after light exposure)

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A560(-)

: Absorbance before light exposure at 560 nm : Absorbance after light exposure at 560 nm : Mean (Blank before light exposure)

Α В : Mean (Blank after light exposure)

A560(+)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : Penicillin G

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{ll} \mbox{Singlet oxygen} & 200 \ \mu\mbox{M} \\ \mbox{Superoxide anion} & 200 \ \mu\mbox{M} \end{array}$

			Singlet oxy	/gen			·		·	Superoxide	anion			·	Indoomont
		A440	(-)	A440(+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.979	0.982	0.969	0.972	1		1	0.034	0.033	0.090	0.052	38		
EDGC 06	2	0.981	0.977	0.970	0.965	2	EDGC 06	2	0.035	0.034	0.091	0.047	38		
FDSC-06	3	0.978	0.982	0.971	0.976	-2	FDSC-06	3	0.041	0.033	0.094	0.055	35		
	Mean	0.979	0.980	0.970	0.971	0		Mean	0.037	0.033	0.092	0.051	37	Positive	Weakly photoreactive
	1	0.975	0.971	0.967	0.960	-2		1	0.034	0.032	0.082	0.044	35		
FDSC-14	2	0.979	0.968	0.972	0.959	-3	FDSC-14	2	0.034	0.033	0.081	0.050	34		
FDSC-14	3	0.985	0.974	0.974	0.963	1	FDSC-14	3	0.034	0.033	0.087	0.045	40		
	Mean	0.980	0.971	0.971	0.961	-1		Mean	0.034	0.033	0.083	0.046	36	Positive	Weakly photoreactive
	1	0.970	0.959	0.964	0.967	4		1	0.034	0.031	0.077	0.043	34		
FDSC-21	2	0.977	0.958	0.973	0.953	2	EDGC 21	2	0.036	0.032	0.075	0.041	30		
FD3C-21	3	0.976	0.963	0.969	0.955	5	FDSC-21	3	0.034	0.035	0.081	0.042	38		
	Mean	0.974	0.960	0.969	0.958	4		Mean	0.035	0.033	0.078	0.042	34	Positive	Weakly photoreactive
Mean for 3 a	assays	-	-	-	-	1	Mean for 3 a	assays	-	-	-	-	36	Positive *	Weakly photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm

A440(+) : Absorbance after light exposure at 440 nm

A560(-) : Absorbance after light exposure at 560 nn

A : Mean (Blank before light exposure)

B : Mean (Blank after light exposure)

B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M.

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Phenytoin

Solubility

Singlet oxygen 200 μM : Superoxide anion 200 μM:

Solution Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

			Singlet oxy	/gen					Superoxide	anion				Indoomont
		A440	(-)	A440(+)			A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No. Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.955	0.964	0.945	0.953	0	1	0.033	0.032	0.102	0.041	50		
EDGC 02	2	0.962	0.971	0.952	0.964	0	2	0.036	0.034	0.104	0.041	49		
FDSC-02	3	0.969	0.978	0.958	0.965	1	3	0.034	0.038	0.109	0.081	56		
	Mean	0.962	0.971	0.952	0.961	0	Mean	0.034	0.035	0.105	0.054	52	Positive	Weakly photoreactive
	1	0.970	0.967	0.967	0.961	-4	1	0.037	0.033	0.105	0.049	53		
FDSC-12	2	0.971	0.962	0.967	0.954	-3	2	0.037	0.035	0.104	0.050	52		
FDSC-12	3	0.966	0.967	0.963	0.959	-4	3	0.040	0.033	0.109	0.047	54		
	Mean	0.969	0.965	0.966	0.958	-4	Mean	0.038	0.034	0.106	0.049	53	Positive	Weakly photoreactive
	1	0.970	0.986	0.964	0.990	2	1	0.033	0.033	0.099	0.049	48		
EDGC 10	2	0.979	0.981	0.973	0.975	2	2	0.035	0.032	0.100	0.054	47		
FDSC-19	3	0.977	0.991	0.970	0.982	3	3	0.038	0.033	0.104	0.050	48		
	Mean	0.975	0.986	0.969	0.982	2	Mean	0.035	0.033	0.101	0.051	48	Positive	Weakly photoreactive
Mean for 3 a	ssays	-	-	-	-	-1	Mean for 3 assays	-	-	-	-	51	Positive *	Weakly photoreactive*3

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

A440(-) : Absorbance before light exposure at 440 nm A440(+): Absorbance after light exposure at 440 nm : Mean (Blank before light exposure) Α : Mean (Blank after light exposure) В

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank after light exposure)

Judged by Original Criteria:

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Bumetrizole

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion

20 µM: Precipitation 200 µM: Precipitation 20 µM: Precipitation 2 μM : Solution 2 μM : Solution

Test concentration

Singlet oxygen $2 \mu M$ Superoxide anion $2 \mu M$

			Singlet oxy	/gen						Superoxide	anion			,	udaamant
		A440	(-)	A440(+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.985	0.982	0.978	0.976	-2		1	0.033	0.032	0.044	0.047	-8		
EDGC 10	2	0.990	0.992	0.985	0.975	-4	EDGC 10	2	0.035	0.032	0.049	0.053	-5		
FDSC-10	3	0.997	0.987	0.996	0.984	-8	FDSC-10	3	0.034	0.034	0.046	0.055	-7		
	Mean	0.991	0.987	0.986	0.978	-5		Mean	0.034	0.033	0.046	0.052	-7	Inconclusive	(Non-photoreactive)
	1	0.976	0.986	0.954	0.996	22		1	0.032	0.031	0.045	0.041	2		
FDSC-16	2	0.983	0.982	0.979	0.980	4	FDSC-16	2	0.033	0.032	0.044	0.044	0		
FDSC-10	3	0.983	0.993	0.979	0.986	4	FDSC-10	3	0.033	0.033	0.043	0.043	-1		
	Mean	0.981	0.987	0.971	0.987	10		Mean	0.033	0.032	0.044	0.043	0	Inconclusive	(Non-photoreactive)
	1	0.960	0.957	0.948	0.946	2		1	0.033	0.032	0.043	0.059	-8		
FDSC-23	2	0.966	0.960	0.954	0.947	2	EDGC 22	2	0.033	0.032	0.045	0.045	-6		
FDSC-23	3	0.968	0.965	0.961	0.959	-3	FDSC-23	3	0.034	0.033	0.046	0.045	-6		
	Mean	0.965	0.961	0.954	0.951	0		Mean	0.033	0.032	0.045	0.050	-7	Inconclusive	(Non-photoreactive)
Mean for 3 a	ssays	-	_	-	-	2	Mean for 3	assays	-	-	-	-	-5	Inconclusive *3	(Non-photoreactive)*3

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : Camphor sulfonic acid

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

n 20 μ M : Not determined 2 μ M : Not determined 20 μ M : Not determined 2 μ M : Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen					·	Superoxide	anion			T	udaamant
		A440	(-)	A440(+)				A560	(-)	A560((+)		J	udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.969	0.972	0.956	0.963	3		1	0.032	0.032	0.045	0.050	-4		
EDEC 04	2	0.975	0.970	0.966	0.959	-1	EDGC 04	2	0.033	0.032	0.046	0.049	-4		
FDSC-04	3	0.969	0.975	0.963	0.963	-4	FDSC-04	3	0.034	0.033	0.046	0.049	-5		
	Mean	0.971	0.972	0.962	0.962	-1		Mean	0.033	0.032	0.046	0.049	-4	Negative	Non-photoreactive
	1	0.967	0.970	0.960	0.970	2		1	0.032	0.034	0.046	0.043	5		
FDSC-13	2	0.974	0.970	0.965	0.962	4	FDSC-13	2	0.033	0.034	0.047	0.043	5		
FDSC-13	3	0.970	0.972	0.963	0.965	2	FDSC-13	3	0.032	0.033	0.046	0.044	5		
	Mean	0.970	0.971	0.963	0.966	3		Mean	0.032	0.034	0.046	0.043	5	Negative	Non-photoreactive
	1	0.963	0.959	0.954	0.954	3		1	0.033	0.037	0.042	0.042	-2		
EDGG 26	2	0.968	0.955	0.958	0.949	4	EDGG 26	2	0.033	0.033	0.044	0.050	0		
FDSC-26	3	0.969	0.964	0.963	0.956	0	FDSC-26	3	0.033	0.033	0.041	0.043	-3		
	Mean	0.967	0.959	0.958	0.953	2		Mean	0.033	0.034	0.042	0.045	-2	Negative	Non-photoreactive
Mean for 3 a	ssays	-	-	-	-	1	Mean for 3 a	assays	-	-	-	-	0	Negative *3	Non-photoreactive*3

A : Mean (Blank before light exposure)

B : Mean (Blank after light exposure)

B : Mean (Blank after light exposure)

B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory

Chemical Name Chlorhexidine

Solubility

Singlet oxygen 200 μM: Solution

20 μM: Not determined 2 μM: Not determined Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

			Singlet oxy	/gen						Superoxide	anion				Judgement
		A440	(-)	A440((+)				A560	(-)	A560((+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.916	0.970	0.902	0.966	13		1	0.039	0.032	0.068	0.048	13		
FDSC-05	2	0.933	0.966	0.920	0.973	12	FDSC-05	2	0.038	0.032	0.064	0.051	10		
FDSC-05	3	0.918	0.975	0.910	0.968	7	FDSC-05	3	0.038	0.032	0.069	0.046	15		
	Mean	0.922	0.970	0.911	0.969	11		Mean	0.038	0.032	0.067	0.048	13	Negative	Non-photoreactive
	1	0.904	0.971	0.902	0.960	-8		1	0.036	0.032	0.067	0.044	18		
FDSC-14	2	0.904	0.968	0.901	0.959	-7	FDSC-14	2	0.037	0.033	0.077	0.050	27		
FDSC-14	3	0.905	0.974	0.907	0.963	-12	FDSC-14	3	0.038	0.033	0.068	0.045	17		
	Mean	0.904	0.971	0.903	0.961	-9		Mean	0.037	0.033	0.071	0.046	21	Positive	Weakly photoreactive
	1	0.892	0.959	0.880	0.967	10		1	0.037	0.031	0.062	0.043	16		
EDGC 21	2	0.901	0.958	0.892	0.953	7	EDGC 21	2	0.037	0.032	0.062	0.041	16		
FDSC-21	3	0.889	0.963	0.880	0.955	7	FDSC-21	3	0.037	0.035	0.062	0.042	16		
	Mean	0.894	0.960	0.884	0.958	8		Mean	0.037	0.033	0.062	0.042	16	Negative	Non-photoreactive
Mean for 3 a	issays	-	_	-	-	3	Mean for 3	assays	-	_	-	-	17	Negative *	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 *2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm

A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : Cinnamic acid

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

		·	Singlet oxy	/gen					·	Superoxide	anion				Indeamont
		A440	(-)	A440((+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.977	0.966	0.967	0.962	7		1	0.035	0.033	0.100	0.050	48		
FDSC-03	2	0.978	0.970	0.972	0.968	3	FDSC-03	2	0.032	0.033	0.102	0.050	53		
FDSC-03	3	0.969	0.974	0.962	0.970	4	FDSC-03	3	0.033	0.035	0.104	0.053	54		
	Mean	0.975	0.970	0.967	0.967	5		Mean	0.033	0.034	0.102	0.051	52	Positive	Weakly photoreactive
	1	0.962	0.970	0.956	0.970	1	'	1	0.032	0.034	0.075	0.043	34		
FDSC-13	2	0.963	0.970	0.958	0.962	0	FDSC-13	2	0.033	0.034	0.077	0.043	35		
FD3C-13	3	0.964	0.972	0.959	0.965	0	FDSC-13	3	0.032	0.033	0.081	0.044	40		
	Mean	0.963	0.971	0.958	0.966	0		Mean	0.032	0.034	0.078	0.043	36	Positive	Weakly photoreactive
	1	0.966	0.974	0.951	0.949	-4		1	0.031	0.032	0.080	0.046	37		
FDSC-20	2	0.978	0.972	0.968	0.954	-9	FDSC-20	2	0.031	0.032	0.077	0.045	34		
FDSC-20	3	0.979	0.980	0.972	0.966	-12	FDSC-20	3	0.033	0.034	0.084	0.045	39		
	Mean	0.974	0.975	0.964	0.956	-8		Mean	0.032	0.033	0.080	0.045	37	Positive	Weakly photoreactive
Mean for 3 a	ssays	-	-	-	-	-1	Mean for 3 a	assays	-	-	-	-	42	Positive *3	Weakly hotoreactive*3

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory

Chemical Name Drometrizole

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 µM: Solution 20 µM: Solution 2 µM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 20 μM Superoxide anion 20 μM

			Singlet oxy	/gen						Superoxide	anion			т.	udaamant
		A440	(-)	A4400	(+)				A560	(-)	A560((+)		J	udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.975	0.974	0.966	0.967	4		1	0.035	0.033	0.058	0.054	8		
FDSC-15	2	0.988	0.975	0.981	0.971	2	EDSC 15	2	0.034	0.032	0.058	0.048	9		
FDSC-15	3	0.990	0.982	0.984	0.977	1	FDSC-15	3	0.037	0.035	0.059	0.043	7		
	Mean	0.984	0.977	0.977	0.972	2		Mean	0.035	0.033	0.058	0.048	8	Inconclusive	Non-photoreactive
	1	0.967	0.980	0.957	0.974	4		1	0.034	0.031	0.050	0.040	2	,	
FDSC-22	2	0.977	0.982	0.964	0.974	7	FDSC-22	2	0.034	0.033	0.052	0.057	4		
FDSC-22	3	0.977	0.991	0.965	0.986	6	FDSC-22	3	0.033	0.032	0.050	0.042	3		
	Mean	0.974	0.984	0.962	0.978	6		Mean	0.034	0.032	0.051	0.046	3	Inconclusive	Non-photoreactive
	1	0.969	0.959	0.955	0.954	8		1	0.035	0.037	0.047	0.042	1		
EDGG 26	2	0.971	0.955	0.955	0.949	10	EDGG 26	2	0.036	0.033	0.050	0.050	3		
FDSC-26	3	0.970	0.964	0.958	0.956	6	FDSC-26	3	0.035	0.033	0.049	0.043	3		
	Mean	0.970	0.959	0.956	0.953	8		Mean	0.035	0.034	0.049	0.045	2	Inconclusive	Non-photoreactive
Mean for 3 a	ssays	-	-	=	-	5	Mean for 3	assays	-	_	-	-	4	Inconclusive *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name L-Histidine

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion

20 μM: Not determined 2 μM: Not determined

200 μM: Solution 20 μM: Not determined

2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

			Singlet oxy	/gen						Superoxide	anion				Indoomont
		A440	(-)	A440(+)	_			A560	(-)	A560((+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.939	0.960	0.930	0.955	4		1	0.031	0.032	0.099	0.043	55		
FDSC-18	2	0.940	0.955	0.933	0.951	2	EDGC 10	2	0.032	0.032	0.098	0.047	53		
FDSC-18	3	0.947	0.966	0.937	0.958	5	FDSC-18	3	0.033	0.033	0.102	0.045	56		
	Mean	0.942	0.960	0.933	0.955	4		Mean	0.032	0.032	0.100	0.045	55	Positive	Weakly photoreactive
	1	0.975	0.972	0.959	0.963	9		1	0.031	0.031	0.042	0.045	-3		
FDSC-24	2	0.980	0.970	0.955	0.963	18	FDSC-24	2	0.034	0.032	0.042	0.048	-6		
FDSC-24	3	0.981	0.977	0.974	0.973	0	FDSC-24	3	0.032	0.032	0.043	0.046	-3		
	Mean	0.979	0.973	0.963	0.966	9		Mean	0.032	0.032	0.042	0.046	-4	Negative	Non-photoreactive
	1	0.940	0.958	0.928	0.948	0		1	0.031	0.032	0.109	0.040	70		
FDSC-25	2	0.939	0.952	0.932	0.949	-5	FDSC-25	2	0.032	0.034	0.108	0.041	68		
FDSC-25	3	0.943	0.951	0.935	0.928	-4	FDSC-25	3	0.033	0.033	0.106	0.042	65		
	Mean	0.941	0.954	0.932	0.942	-3		Mean	0.032	0.033	0.108	0.041	68	Positive	Weakly photoreactive
Mean for 3 a	issays	-	-	-	-	3	Mean for 3	assays	-	-	-	-	40	Positive *	*3 Weakly photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

(Photoreactive), (Weakly photoreactive), (Non-photoreactive): Ros assay was conducted at 2 µM due to precipitation at 20µM and 200µM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results Superoxide results <70), weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), or Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 µM were not used for the judgment of integrated results or data analyses.</p>

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : Methylbenzylidene camphor

Solubility

Singlet oxygen 200 μM : Precipitation Superoxide anion 200 μM : Precipitation 20 μM : Solution 20 μM : Solution 2 μM: Not determined 2 μM: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 20 \ \mu\text{M} \\ \text{Superoxide anion} & 20 \ \mu\text{M} \end{array}$

•		•	Singlet oxy	ygen	·	•		<u> </u>		Superoxide	anion			т	udaamant
		A440	(-)	A440(+)	_			A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.957	0.973	0.956	0.964	-4		1	0.031	0.032	0.050	0.048	3		
EDGC 07	2	0.967	0.971	0.963	0.967	-1	EDGC 07	2	0.033	0.032	0.053	0.049	4		
FDSC-07	3	0.968	0.978	0.966	0.976	-3		3	0.035	0.033	0.055	0.047	4		
	Mean	0.964	0.974	0.962	0.969	-3		Mean	0.033	0.032	0.053	0.048	4	Inconclusive	Non-photoreactive
	1	0.964	0.974	0.960	0.967	-1		1	0.033	0.033	0.061	0.054	13		
FDSC-15	2	0.982	0.975	0.979	0.971	-2	FDSC-15	2	0.034	0.032	0.052	0.048	3		
FDSC-15	3	0.980	0.982	0.976	0.977	-1	FDSC-15	3	0.032	0.035	0.051	0.043	4		
	Mean	0.975	0.977	0.972	0.972	-1		Mean	0.033	0.033	0.055	0.048	7	Inconclusive	Non-photoreactive
	1	0.962	0.980	0.956	0.974	0		1	0.033	0.031	0.043	0.040	-4		
FDSC-22	2	0.966	0.982	0.962	0.974	-2	EDGC 22	2	0.034	0.033	0.043	0.057	-5		
FDSC-22	3	0.965	0.991	0.959	0.986	0	FDSC-22	3	0.034	0.032	0.042	0.042	-6		
	Mean	0.964	0.984	0.959	0.978	-1		Mean	0.034	0.032	0.043	0.046	-5	Inconclusive	Non-photoreactive
Mean for 3 a	issays	-	-	-	-	-2	Mean for 3 a	assays	-	-	-	-	2	Inconclusive *3	Non-photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm

A440(+) : Absorbance after light exposure at 440 nm

A560(+) : Absorbance after light exposure at 560 nm

A : Mean (Blank before light exposure)

B : Mean (Blank after light exposure)

B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : Octrizole

Solubility

Singlet oxygen 200 μM : Precipitation Superoxide anion 200 μM : Precipitation 20 μM : Precipitation 2 μM : Solution 20 μM : Precipitation 2 μM : Solution

Test concentration

 $\begin{array}{ccc} \text{Singlet oxygen} & 2 \ \mu\text{M} \\ \text{Superoxide anion} & 2 \ \mu\text{M} \end{array}$

		•	Singlet oxy	/gen	·	•				Superoxide	anion				udaamant
		A440	(-)	A440(+)	_			A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.973	0.977	0.969	0.965	-4		1	0.034	0.031	0.055	0.049	2		
EDGC 11	2	0.979	0.972	0.973	0.967	-2	EDGC 11	2	0.035	0.032	0.057	0.055	3		
FDSC-11	3	0.983	0.979	0.977	0.971	-2		3	0.035	0.034	0.056	0.050	2		
	Mean	0.978	0.976	0.973	0.968	-3		Mean	0.035	0.032	0.056	0.051	2	Inconclusive	(Non-photoreactive)
	1	0.982	0.981	0.975	0.977	4	'	1	0.033	0.032	0.068	0.053	17		
FDSC-17	2	0.997	0.989	0.991	0.984	3	FDSC-17	2	0.034	0.033	0.076	0.052	24		
FDSC-17	3	0.997	0.995	0.993	0.993	1	FDSC-17	3	0.033	0.032	0.069	0.046	18		
	Mean	0.992	0.988	0.986	0.985	3		Mean	0.033	0.032	0.071	0.050	20	Positive	(Weakly photoreactive)
	1	0.958	0.960	0.952	0.955	1	'	1	0.034	0.032	0.053	0.043	6		
FDSC-18	2	0.967	0.955	0.964	0.951	-2	FDSC-18	2	0.033	0.032	0.053	0.047	7		
FDSC-18	3	0.967	0.966	0.970	0.958	-8	FDSC-18	3	0.035	0.033	0.053	0.045	5		
	Mean	0.964	0.960	0.962	0.955	-3		Mean	0.034	0.032	0.053	0.045	6	Inconclusive	(Non-photoreactive)
Mean for 3 a	issays	-	_	_	-	-1	Mean for 3 a	assays	_	_	_	-	9	Inconclusive *3	(Non-photoreactive)*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm

A440(+) : Absorbance after light exposure at 440 nm

A : Mean (Blank before light exposure)

*2 : increase of A560 x10³ = (A560(+) - A560(-) - (B-A)) ×1000

*3 : increase of A560 x10³ = (A560(+) - A560(-) - (B-A)) ×1000

*4 : increase of A560 x10³ = (A560(+) - A560(-) - (B-A)) ×1000

*5 : Absorbance after light exposure at 560 nm

*6 : Mean (Blank before light exposure)

В

Judged by Original Criteria:

В

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

: Mean (Blank after light exposure)

: Mean (Blank after light exposure)

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Octyl methacrylate

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 µM: Solution 20 µM: Solution

2 µM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 20 μM Superoxide anion 20 μM

			Singlet oxy	/gen						Superoxide	anion			T	udgement
		A440		A440	(+)	_			A560	(-)	A560((+)	_		uagement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.975	0.973	0.973	0.964	-3		1	0.034	0.032	0.044	0.048	-6		
FDSC-07	2	0.982	0.971	0.973	0.967	4	EDSC 07	2	0.033	0.032	0.043	0.049	-6		
FDSC-07	3	0.984	0.978	0.977	0.976	2	FDSC-07	3	0.034	0.033	0.044	0.047	-6		
	Mean	0.980	0.974	0.974	0.969	1		Mean	0.034	0.032	0.044	0.048	-6	Inconclusive	Non-photoreactive
	1	0.981	0.974	0.975	0.967	1		1	0.032	0.033	0.046	0.054	-1	,	
FDSC-15	2	0.981	0.975	0.979	0.971	-3	FDSC-15	2	0.032	0.032	0.047	0.048	0		
FDSC-15	3	0.987	0.982	0.984	0.977	-2	FDSC-15	3	0.033	0.035	0.046	0.043	-2		
	Mean	0.983	0.977	0.979	0.972	-1		Mean	0.032	0.033	0.046	0.048	-1	Inconclusive	Non-photoreactive
	1	0.963	0.980	0.952	0.974	5		1	0.033	0.031	0.040	0.040	-7	,	
EDGG 22	2	0.965	0.982	0.956	0.974	3	EDGG 22	2	0.036	0.033	0.042	0.057	-8		
FDSC-22	3	0.970	0.991	0.959	0.986	5	FDSC-22	3	0.033	0.032	0.040	0.042	-7		
	Mean	0.966	0.984	0.956	0.978	4		Mean	0.034	0.032	0.041	0.046	-7	Inconclusive	Non-photoreactive
Mean for 3 a	ssavs	-	_	-	_	1	Mean for 3	assavs	-	_	-	-	-5	Inconclusive *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 A440(-) : Absorbance before light exposure at 440 nm

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A560(-) A560(+)

: Absorbance before light exposure at 560 nm : Absorbance after light exposure at 560 nm

: Absorbance after light exposure at 440 nm : Mean (Blank before light exposure) Α : Mean (Blank after light exposure) В

: Mean (Blank before light exposure) : Mean (Blank after light exposure)

Judged by Original Criteria:

A440(+)

Α

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

(Photoreactive), (Weakly photoreactive), (Non-photoreactive): Ros assay was conducted at 2 µM due to precipitation at 20µM and 200µM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results Superoxide results <70), weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), or Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 µM were not used for the judgment of integrated results or data analyses.

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : Octyl methoxycinnamate

Solubility

Singlet oxygen 200 μM : Precipitation Superoxide anion 200 μM : Precipitation 20 μM : Precipitation 2 μM : Solution 20 μM : Precipitation 2 μM : Solution

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 2 \ \mu\text{M} \\ \text{Superoxide anion} & 2 \ \mu\text{M} \end{array}$

•		•	Singlet oxy	ygen						Superoxide	anion			1	udaamant
		A440	(-)	A440((+)	_			A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.977	0.982	0.971	0.976	-3		1	0.032	0.032	0.045	0.047	-6		
EDGC 10	2	0.982	0.992	0.977	0.975	-4	EDGC 10	2	0.031	0.032	0.046	0.053	-4		
FDSC-10	3	0.985	0.987	0.982	0.984	-6		3	0.032	0.034	0.046	0.055	-5		
	Mean	0.981	0.987	0.977	0.978	-4		Mean	0.032	0.033	0.046	0.052	-5	Inconclusive	(Non-photoreactive)
	1	0.977	0.986	0.972	0.996	5		1	0.031	0.031	0.042	0.041	0		
FDSC-16	2	0.979	0.982	0.974	0.980	5	FDSC-16	2	0.030	0.032	0.044	0.044	3		
FDSC-16	3	0.980	0.993	0.973	0.986	7	FDSC-10	3	0.031	0.033	0.044	0.043	2		
	Mean	0.979	0.987	0.973	0.987	6		Mean	0.031	0.032	0.043	0.043	2	Inconclusive	(Non-photoreactive)
	1	0.962	0.957	0.950	0.946	2		1	0.030	0.032	0.046	0.059	-2		
FDSC-23	2	0.969	0.960	0.955	0.947	4	EDGC 22	2	0.031	0.032	0.050	0.045	1		
FDSC-23	3	0.965	0.965	0.955	0.959	0	FDSC-23	3	0.032	0.033	0.055	0.045	5		
	Mean	0.965	0.961	0.953	0.951	2		Mean	0.031	0.032	0.050	0.050	1	Inconclusive	(Non-photoreactive)
Mean for 3 a	assays	-	_	_	_	1	Mean for 3 a	assays	-	_	_	-	-1	Inconclusive *3	(Non-photoreactive)*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Octyl salicylate

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 µM: Solution 20 µM: Solution 2 µM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 20 μM Superoxide anion 20 μM

			Singlet oxy	/gen						Superoxide	anion			T.	udaamant
		A440	(-)	A4400	(+)				A560	(-)	A560(+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.983	0.973	0.979	0.964	-1		1	0.041	0.032	0.062	0.048	5		
EDGC 07	2	0.992	0.971	0.985	0.967	2	EDGC 07	2	0.042	0.032	0.068	0.049	10		
FDSC-07	3	0.996	0.978	0.988	0.976	3	FDSC-07	3	0.041	0.033	0.063	0.047	6		
	Mean	0.990	0.974	0.984	0.969	1		Mean	0.041	0.032	0.064	0.048	7	Inconclusive	Non-photoreactive
	1	0.996	0.974	0.983	0.967	8		1	0.043	0.033	0.060	0.054	2		
EDGC 15	2	1.004	0.975	0.993	0.971	6	EDCC 15	2	0.043	0.032	0.058	0.048	0		
FDSC-15	3	1.005	0.982	0.994	0.977	6	FDSC-15	3	0.044	0.035	0.062	0.043	3		
	Mean	1.002	0.977	0.990	0.972	7		Mean	0.043	0.033	0.060	0.048	2	Inconclusive	Non-photoreactive
	1	0.984	0.980	0.970	0.974	8		1	0.043	0.031	0.054	0.040	-3		
EDGG 22	2	0.989	0.982	0.976	0.974	7	EDGC 22	2	0.044	0.033	0.056	0.057	-2		
FDSC-22	3	0.993	0.991	0.980	0.986	7	FDSC-22	3	0.046	0.032	0.054	0.042	-6		
	Mean	0.989	0.984	0.975	0.978	7		Mean	0.044	0.032	0.055	0.046	-4	Inconclusive	Non-photoreactive
Mean for 3 a	issays	-	_	-	-	5	Mean for 3	assays	-	-	-	-	2	Inconclusive *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

(Photoreactive), (Weakly photoreactive), (Non-photoreactive): Ros assay was conducted at 2 µM due to precipitation at 20µM and 200µM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results Superoxide results <70), weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), or Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 µM were not used for the judgment of integrated results or data analyses.</p>

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : PABA

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{ll} \mbox{Singlet oxygen} & 200 \ \mu\mbox{M} \\ \mbox{Superoxide anion} & 200 \ \mu\mbox{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion				ludaamant
		A440	(-)	A440(+)				A560	(-)	A560	(+)			ludgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.964	0.972	0.953	0.963	1		1	0.031	0.032	0.042	0.050	-6		
FDSC-04	2	0.969	0.970	0.955	0.959	4	EDGC 04	2	0.032	0.032	0.040	0.049	-9		
FDSC-04	3	0.973	0.975	0.962	0.963	1	FDSC-04	3	0.033	0.033	0.039	0.049	-11		
	Mean	0.969	0.972	0.957	0.962	2		Mean	0.032	0.032	0.040	0.049	-9	Negative	Non-photoreactive
	1	0.965	0.970	0.957	0.970	3		1	0.032	0.034	0.041	0.043	0		
FDSC-13	2	0.966	0.970	0.960	0.962	1	FDSC-13	2	0.032	0.034	0.040	0.043	-1		
FDSC-13	3	0.960	0.972	0.952	0.965	3	FDSC-13	3	0.033	0.033	0.037	0.044	-5		
	Mean	0.964	0.971	0.956	0.966	2		Mean	0.032	0.034	0.039	0.043	-2	Negative	Non-photoreactive
	1	0.966	0.974	0.918	0.949	29		1	0.030	0.032	0.043	0.046	1		
FDSC-20	2	0.971	0.972	0.963	0.954	-11	FDSC-20	2	0.030	0.032	0.042	0.045	0		
FDSC-20	3	0.976	0.980	0.954	0.966	3	FDSC-20	3	0.032	0.034	0.039	0.045	-5		
	Mean	0.971	0.975	0.945	0.956	7		Mean	0.031	0.033	0.041	0.045	-1	Negative	Non-photoreactive
Mean for 3 a	ssays	-	-	-	-	4	Mean for 3	assays	-	-	-	-	-4	Negative *3	Non-photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory

Chemical Name SDS

Solubility

Singlet oxygen 200 µM: Solution Superoxide anion

200 µM: Precipitation

20 µM: Not determined 2 µM: Not determined 20 μM: Precipitation 2 μM : Solution

Test concentration

Singlet oxygen 200 μM Superoxide anion 2 μΜ

			Singlet oxy	/gen	·		·			Superoxide	anion				udaamant
		A440	(-)	A4400	(+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.945	0.972	0.931	0.963	4		1	0.033	0.031	0.050	0.049	-2		
FDSC-04	2	0.960	0.970	0.941	0.959	9	EDSC 11	2	0.035	0.032	0.059	0.055	5		
FDSC-04	3	0.950	0.975	0.937	0.963	3	FDSC-11	3	0.035	0.034	0.054	0.050	0		
	Mean	0.952	0.972	0.936	0.962	5		Mean	0.034	0.032	0.054	0.051	1	Inconclusive	(Non-photoreactive)
	1	0.977	0.984	0.959	0.975	12		1	0.033	0.032	0.047	0.053	-4		
FDSC-09	2	0.989	0.984	0.981	0.980	2	FDSC-17	2	0.034	0.033	0.052	0.052	0		
FDSC-09	3	0.985	0.994	0.969	0.987	10	FDSC-17	3	0.035	0.032	0.046	0.046	-7		
	Mean	0.984	0.987	0.970	0.981	8		Mean	0.034	0.032	0.048	0.050	-4	Inconclusive	(Non-photoreactive)
	1	0.961	0.977	0.919	0.965	34		1	0.034	0.032	0.050	0.043	3		
EDGC 11	2	0.974	0.972	0.968	0.967	-2	FDGG 10	2	0.035	0.032	0.048	0.047	0		
FDSC-11	3	0.971	0.979	0.958	0.971	5	FDSC-18	3	0.036	0.033	0.050	0.045	1		
	Mean	0.969	0.976	0.948	0.968	12		Mean	0.035	0.032	0.049	0.045	1	Inconclusive	(Non-photoreactive)
Mean for 3 a	ssays	-	-	-	-	8	Mean for 3	assays	-	_	-	-	-1	Inconclusive *3	(Non-photoreactive)*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

(Photoreactive), (Weakly photoreactive), (Non-photoreactive): Ros assay was conducted at 2 µM due to precipitation at 20µM and 200µM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results Superoxide results <70), weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), or Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 µM were not used for the judgment of integrated results or data analyses.</p>

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 2

Chemical Name : UV-571

Solubility

Singlet oxygen 200 μM : Precipitation Superoxide anion 200 μM : Precipitation 20 μM : Precipitation 2 μM : Solution 20 μM : Precipitation 2 μM : Solution

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 2 \ \mu\text{M} \\ \text{Superoxide anion} & 2 \ \mu\text{M} \end{array}$

•			Singlet oxy	/gen	·	•	•	<u> </u>		Superoxide	anion				lu da am an t
		A440	(-)	A440(+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.997	0.982	0.994	0.976	-6		1	0.034	0.032	0.054	0.047	1		
EDSC 10	2	0.996	0.992	0.997	0.975	-10	EDGC 10	2	0.034	0.032	0.055	0.053	2		
FDSC-10	3	0.999	0.987	1.003	0.984	-13	FDSC-10	3	0.034	0.034	0.057	0.055	4		
	Mean	0.997	0.987	0.998	0.978	-10		Mean	0.034	0.033	0.055	0.052	2	Inconclusive	(Non-photoreactive)
	1	0.988	0.986	0.989	0.996	-1		1	0.034	0.031	0.052	0.041	7		
FDSC-16	2	0.993	0.982	0.994	0.980	-1	FDSC-16	2	0.033	0.032	0.053	0.044	9		
FDSC-10	3	0.998	0.993	0.976	0.986	22	FDSC-10	3	0.034	0.033	0.053	0.043	8		
	Mean	0.993	0.987	0.986	0.987	7		Mean	0.034	0.032	0.053	0.043	8	Inconclusive	(Non-photoreactive)
	1	0.956	0.959	0.954	0.954	-4		1	0.033	0.037	0.045	0.042	1		
FDSC-26	2	0.964	0.955	0.961	0.949	-3	EDGC 26	2	0.033	0.033	0.045	0.050	1		
FDSC-26	3	0.964	0.964	0.963	0.956	-5	FDSC-26	3	0.034	0.033	0.044	0.043	-1		
	Mean	0.961	0.959	0.959	0.953	-4		Mean	0.033	0.034	0.045	0.045	0	Inconclusive	(Non-photoreactive)
Mean for 3 a	issays	-	-	-	-	-2	Mean for 3 a	assays	-	-	-	-	3	Inconclusive *3	(Non-photoreactive)*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Acridine

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

•			Singlet oxy	gen	·	•			•	Superoxide	anion	·	•		ludaamant
		A440	(-)	A440(+)	_			A560	(-)	A560((+)	_		udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.988	1.005	0.757	1.000	228		1	0.029	0.030	0.227	0.035	191		
MT-001	2	1.005	1.009	0.778	1.005	225	MT 001	2	0.030	0.030	0.229	0.035	192		
M11-001	3	0.994	1.010	0.775	1.012	217		3	0.029	0.029	0.228	0.036	192		
	Mean	0.996	1.008	0.770	1.006	223		Mean	0.030	0.029	0.228	0.036	192	Positive	Photoreactive
	1	0.980	0.994	0.756	0.989	221		1	0.029	0.029	0.203	0.034	169		
MT-009	2	0.997	0.997	0.771	0.994	222	MT-009	2	0.030	0.029	0.205	0.035	171		
M1-009	3	0.988	0.999	0.765	0.995	219	M1-009	3	0.029	0.028	0.209	0.034	176		
	Mean	0.988	0.997	0.764	0.993	221		Mean	0.029	0.029	0.206	0.034	172	Positive	Photoreactive
	1	0.983	0.996	0.751	0.992	228		1	0.028	0.029	0.205	0.034	173		
MT-016	2	0.982	0.988	0.757	0.985	221	MT-016	2	0.028	0.029	0.200	0.033	168		
W11-016	3	0.986	0.989	0.764	0.984	219	W11-016	3	0.029	0.029	0.196	0.033	163		
	Mean	0.984	0.991	0.757	0.987	223		Mean	0.028	0.029	0.200	0.033	168	Positive	Photoreactive
Mean for 3 a	ssays	-	-	-	-	222	Mean for 3 a	assays	-	-	-	-	177	Positive *3	Photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm

A440(+) : Absorbance after light exposure at 440 nm

A560(+) : Absorbance after light exposure at 560 nm

A : Mean (Blank before light exposure)

B : Mean (Blank after light exposure)

B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \geq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Acridine HCl

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

20 μM : Not determined 2 μM : Not determined 20 μM : Not determined 2 μM : Not determined

Test concentration

 $\begin{array}{cc} Singlet\ oxygen & 200\ \mu M \\ Superoxide\ anion & 200\ \mu M \end{array}$

		•	Singlet oxy	gen		•	•		•	Superoxide	anion	·	•		[udaamant
		A440	(-)	A4400	(+)				A560	(-)	A560((+)		J	ludgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	l Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.995	1.005	0.774	1.000	219		1	0.031	0.030	0.212	0.035	175		
MT 001	2	1.001	1.009	0.785	1.005	214	MT 001	2	0.030	0.030	0.212	0.035	175		
MT-001	3	1.003	1.010	0.788	1.012	213	MT-001	3	0.029	0.029	0.215	0.036	179		
	Mean	0.999	1.008	0.782	1.006	215		Mean	0.030	0.029	0.213	0.036	176	Positive	Photoreactive
	1	0.982	0.994	0.757	0.989	221		1	0.028	0.029	0.213	0.034	180		
MT-009	2	0.987	0.997	0.770	0.994	213	MT-009	2	0.029	0.029	0.214	0.035	180		
W11-009	3	0.996	0.999	0.780	0.995	212	W11-009	3	0.028	0.028	0.217	0.034	184		
	Mean	0.988	0.997	0.769	0.993	215		Mean	0.029	0.029	0.215	0.034	181	Positive	Photoreactive
	1	0.981	0.996	0.755	0.992	222		1	0.029	0.029	0.199	0.034	166		
MT-016	2	0.990	0.988	0.770	0.985	216	MT-016	2	0.029	0.029	0.196	0.033	163		
M11-016	3	0.992	0.989	0.771	0.984	217	M11-016	3	0.028	0.029	0.196	0.033	164		
	Mean	0.988	0.991	0.765	0.987	218		Mean	0.029	0.029	0.197	0.033	164	Positive	Photoreactive
Mean for 3 a	ssays	-	-	=	-	216	Mean for 3	assays	-	-	-	-	174	Positive *3	Photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm

A : Mean (Blank before light exposure)

B : Mean (Blank after light exposure)

B : Mean (Blank after light exposure)

B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Amiodarone HCl

Solubility

Singlet oxygen 200 μM : Precipitation Superoxide anion 200 μM : Precipitation 20 μM : Precipitation 2 μM : Solution 20 μM : Precipitation 2 μM : Solution

Test concentration

 $\begin{array}{ccc} \text{Singlet oxygen} & 2 \ \mu\text{M} \\ \text{Superoxide anion} & 2 \ \mu\text{M} \end{array}$

		·	Singlet oxy	/gen						Superoxide	anion				udaamant
		A440	(-)	A440((+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.979	0.998	0.938	0.994	37		1	0.032	0.029	0.037	0.034	0		
MT-010	2	1.007	1.002	0.965	0.997	38	MT 010	2	0.032	0.029	0.038	0.035	1		
M11-010	3	1.017	1.001	0.981	0.996	32		3	0.032	0.028	0.038	0.034	0		
	Mean	1.001	1.000	0.961	0.996	36		Mean	0.032	0.029	0.038	0.034	0	Positive	(Photoreactive)
	1	0.990	0.996	0.936	0.992	50		1	0.032	0.029	0.037	0.034	1	,	
MT-016	2	0.990	0.988	0.934	0.985	53	MT-016	2	0.031	0.029	0.037	0.033	1		
W11-010	3	0.991	0.989	0.938	0.984	49	W11-016	3	0.031	0.029	0.039	0.033	3		
	Mean	0.990	0.991	0.936	0.987	51		Mean	0.031	0.029	0.038	0.033	2	Positive	(Photoreactive)
	1	0.991	1.002	0.936	0.997	51		1	0.031	0.029	0.038	0.036	0	,	
MT-023	2	0.997	0.998	0.943	0.993	50	MT-023	2	0.031	0.029	0.038	0.036	1		
M11-023	3	0.996	0.998	0.949	0.995	43	M11-023	3	0.030	0.029	0.038	0.036	0		
	Mean	0.995	0.999	0.943	0.995	48		Mean	0.031	0.029	0.038	0.036	0	Positive	(Photoreactive)
Mean for 3 a	ssays	-	_	-	-	45	Mean for 3 a	assays	-	_	-	-	1	Positive *3	(Photoreactive)*3

A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Chlorpromazine HCl

Solubility

Singlet oxygen 200 μM: Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

	·		Singlet oxy	/gen					•	Superoxide	anion	·	•		Indoomont
		A440	(-)	A440(+)	_			A560	(-)	A560	(+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.971	1.000	0.986	0.997	-20		1	0.029	0.029	0.119	0.034	85		
MT-005	2	0.973	1.003	0.992	1.000	-23	MT-005	2	0.029	0.029	0.121	0.034	87		
M11-005	3	0.973	1.002	0.993	0.998	-23	M11-005	3	0.029	0.029	0.122	0.034	88		
	Mean	0.972	1.002	0.990	0.998	-22		Mean	0.029	0.029	0.121	0.034	87	Positive	Photoreactive
	1	0.963	0.994	0.994	0.988	-35	'	1	0.028	0.029	0.117	0.034	84		
MT-013	2	0.966	0.995	0.992	0.991	-30	MT-013	2	0.029	0.029	0.119	0.035	84		
W11-013	3	0.970	0.995	0.998	0.990	-31	W11-013	3	0.029	0.028	0.119	0.034	85		
	Mean	0.966	0.994	0.994	0.990	-32		Mean	0.029	0.029	0.118	0.034	84	Positive	Photoreactive
	1	0.973	1.003	0.992	1.003	-21		1	0.029	0.030	0.113	0.035	78		
MT-020	2	0.981	1.000	1.006	0.998	-26	MT 020	2	0.029	0.030	0.113	0.035	78		
IVI I -020	3	0.977	0.999	0.997	0.997	-22	MT-020	3	0.029	0.031	0.113	0.036	79		
	Mean	0.977	1.001	0.998	0.999	-23		Mean	0.029	0.030	0.113	0.036	78	Positive	Photoreactive
Mean for 3 a	ssays	-	_	_	-	-26	Mean for 3	assavs	-	-	_	-	83	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 *2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm

: Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

(Photoreactive), (Weakly photoreactive), (Non-photoreactive): Ros assay was conducted at 2 µM due to precipitation at 20µM and 200µM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results Superoxide results <70), weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), or Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 µM were not used for the judgment of integrated results or data analyses.</p>

^{*3:} Final judgment based on the mean value of three assays

Laboratory :

Chemical Name : Doxycycline HCl

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

20 μ M : Not determined 2 μ M : Not determined 20 μ M : Not determined 2 μ M : Not determined

Test concentration

 $\begin{array}{cc} Singlet\ oxygen & 200\ \mu M \\ Superoxide\ anion & 200\ \mu M \end{array}$

			Singlet oxy	/gen						Superoxide	anion	·		-	ludaamant
		A440	(-)	A4400	(+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.978	1.002	0.805	0.996	167		1	0.036	0.029	0.280	0.034	240		
MT-006	2	0.995	1.006	0.824	0.999	165	MT-006	2	0.037	0.029	0.292	0.034	250		
M11-006	3	0.987	1.007	0.817	1.001	165	M11-006	3	0.036	0.028	0.291	0.033	250		
	Mean	0.987	1.005	0.815	0.999	166		Mean	0.036	0.029	0.288	0.034	247	Positive	Photoreactive
	1	0.980	1.007	0.814	1.003	162		1	0.035	0.029	0.282	0.035	241		
MT-014	2	0.999	1.012	0.837	1.008	159	MT-014	2	0.036	0.029	0.293	0.035	251		
W11-014	3	0.992	1.010	0.828	1.009	160	W11-014	3	0.035	0.029	0.296	0.037	255		
	Mean	0.991	1.010	0.826	1.006	160		Mean	0.035	0.029	0.290	0.035	249	Positive	Photoreactive
	1	0.984	1.008	0.816	1.001	163		1	0.035	0.029	0.297	0.035	257		
MT-021	2	0.982	1.004	0.820	1.000	157	MT-021	2	0.035	0.030	0.307	0.035	266		
M11-021	3	0.987	1.004	0.823	1.001	159	M11-021	3	0.034	0.029	0.300	0.035	260		
	Mean	0.985	1.005	0.820	1.000	160		Mean	0.035	0.029	0.302	0.035	261	Positive	Photoreactive
Mean for 3 a	ssays	-	-	-	-	162	Mean for 3	assays	-	-	=	-	252	Positive *3	Photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Fenofibrate

Solubility

Singlet oxygen 200 μM : Precipitation Superoxide anion 200 μM : Precipitation 20 μM : Solution 20 μM : Solution 2 μM: Not determined 2 μM: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 20 \ \mu\text{M} \\ \text{Superoxide anion} & 20 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen	·	•			•	Superoxide	anion	·	•		ludaamant
		A440	(-)	A440(+)	_			A560	(-)	A560((+)	_		udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.011	1.011	0.831	1.005	175		1	0.038	0.029	0.033	0.033	-9		
MT-002	2	1.009	1.016	0.851	1.011	153	MT 002	2	0.038	0.030	0.033	0.034	-9		
M11-002	3	1.009	1.018	0.850	1.013	154	MT-002	3	0.037	0.028	0.034	0.033	-8		
	Mean	1.009	1.015	0.844	1.010	161		Mean	0.038	0.029	0.034	0.034	-9	Positive	Photoreactive
	1	1.004	0.998	0.839	0.993	160		1	0.039	0.030	0.033	0.034	-12		
MT-011	2	1.007	1.005	0.839	0.999	162	MT-011	2	0.039	0.029	0.033	0.035	-11		
M11-011	3	1.004	1.003	0.838	1.000	161	M11-011	3	0.038	0.028	0.033	0.035	-12		
	Mean	1.005	1.002	0.839	0.997	161		Mean	0.039	0.029	0.033	0.035	-12	Positive	Photoreactive
	1	1.013	1.009	0.846	1.001	159		1	0.039	0.030	0.033	0.035	-12		
MT-019	2	1.015	1.002	0.845	0.992	161	MT-019	2	0.040	0.030	0.033	0.035	-12		
M11-019	3	1.017	1.003	0.845	0.994	163	M11-019	3	0.039	0.030	0.033	0.035	-11		
	Mean	1.015	1.005	0.845	0.996	161		Mean	0.039	0.030	0.033	0.035	-12	Positive	Photoreactive
Mean for 3 a	issays	-	-	=	-	161	Mean for 3 a	assays	-	-	-	-	-11	Positive *3	Photoreactive*3

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

: Absorbance after light exposure at 440 nm
: Mean (Blank before light exposure)
: Mean (Blank after light exposure)

B : Mean (Blank after light exposure)

B : Mean (Blank after light exposure)

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm A : Mean (Blank before light exposure)

: Mean (Blank after light exposure)

Judged by Original Criteria:

A440(-)

A440(+)

В

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Furosemide

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

	<u> </u>		Singlet oxy	/gen	·		•			Superoxide	anion		•		ludaamant
		A440	(-)	A440(+)				A560	(-)	A560((+)			ludgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.993	0.999	0.838	0.992	150		1	0.032	0.029	0.087	0.034	50		
MT-004	2	1.002	1.003	0.850	0.997	146	MT-004	2	0.033	0.029	0.088	0.034	50		
M11-004	3	0.998	1.001	0.854	0.996	138	M11-004	3	0.031	0.029	0.092	0.034	56		
	Mean	0.998	1.001	0.847	0.995	145		Mean	0.032	0.029	0.089	0.034	52	Positive	Photoreactive
	1	0.990	0.992	0.836	0.989	150		1	0.031	0.030	0.084	0.034	48		
MT-012	2	0.997	0.999	0.843	0.994	150	MT-012	2	0.032	0.029	0.085	0.035	48		
M11-012	3	0.992	0.999	0.850	0.996	139	M11-012	3	0.031	0.029	0.089	0.034	53		
	Mean	0.993	0.997	0.843	0.993	146		Mean	0.031	0.029	0.086	0.034	50	Positive	Photoreactive
	1	0.998	0.997	0.841	0.993	154		1	0.031	0.029	0.089	0.033	53		
MT 010	2	0.989	0.992	0.845	0.987	140	MT 010	2	0.031	0.028	0.090	0.033	53		
MT-018	3	0.989	0.990	0.846	0.987	138	MT-018	3	0.031	0.028	0.091	0.033	55		
	Mean	0.992	0.993	0.844	0.989	144		Mean	0.031	0.028	0.090	0.033	54	Positive	Photoreactive
Mean for 3 a	assays	-	_	-	-	145	Mean for 3 a	issays	-	-	-	-	52	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 A440(-) : Absorbance before light exposure at 440 nm

000 *2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm A : Mean (Blank before light exposure)

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure) A
B : Mean (Blank after light exposure) B

: Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Ketoprofen

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM : Solution $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

	•		Singlet oxy	ygen			•	•	•	Superoxide	anion		•	•	I. d
	_	A440	(-)	A440	(+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.010	1.005	0.779	1.000	229		1	0.030	0.030	0.115	0.035	78		
MT 001	2	1.011	1.009	0.788	1.005	221	MT 001	2	0.031	0.030	0.117	0.035	79		
MT-001	3	1.014	1.010	0.788	1.012	223	MT-001	3	0.030	0.029	0.119	0.036	82		
	Mean	1.012	1.008	0.785	1.006	224		Mean	0.030	0.029	0.117	0.036	80	Positive	Photoreactive
	1	0.996	0.994	0.770	0.989	222		1	0.029	0.029	0.120	0.034	86	,	
MT-009	2	1.002	0.997	0.776	0.994	222	MT-009	2	0.030	0.029	0.123	0.035	88		
M11-009	3	1.000	0.999	0.782	0.995	215	M1-009	3	0.029	0.028	0.124	0.034	89		
	Mean	1.000	0.997	0.776	0.993	220		Mean	0.030	0.029	0.122	0.034	88	Positive	Photoreactive
	1	0.992	0.996	0.781	0.992	207		1	0.030	0.029	0.120	0.034	86		
MT 016	2	0.994	0.988	0.784	0.985	207	MT 016	2	0.030	0.029	0.121	0.033	88		
MT-016	3	0.996	0.989	0.788	0.984	204	MT-016	3	0.029	0.029	0.121	0.033	87		
	Mean	0.994	0.991	0.784	0.987	206		Mean	0.030	0.029	0.121	0.033	87	Positive	Photoreactive
Mean for 3 a	ssavs	-	_	_	-	217	Mean for 3 a	assays	_	_	_	-	85	Positive *3	Photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : 6-methylcoumarine

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20 \mu M$: Not determined $2 \mu M$: Not determined $2 \mu M$: Not determined $2 \mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion				Judgement
		A440	(-)	A440((+)				A560	(-)	A560((+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.999	1.002	0.885	0.996	108		1	0.029	0.029	0.096	0.034	62		
MT-006	2	1.007	1.006	0.896	0.999	105	MT 006	2	0.029	0.029	0.095	0.034	61		
M11-006	3	1.008	1.007	0.898	1.001	104	MT-006	3	0.029	0.028	0.098	0.033	64		
	Mean	1.005	1.005	0.893	0.999	106		Mean	0.029	0.029	0.097	0.034	62	Positive	Photoreactive
	1	1.004	1.007	0.905	1.003	95		1	0.029	0.029	0.104	0.035	69		
MT-014	2	1.014	1.012	0.914	1.008	96	MT-014	2	0.030	0.029	0.105	0.035	69		
M11-014	3	1.009	1.010	0.910	1.009	96	M1-014	3	0.029	0.029	0.107	0.037	72		
	Mean	1.009	1.010	0.909	1.006	96		Mean	0.029	0.029	0.105	0.035	70	Positive	Photoreactive
	1	1.005	1.008	0.905	1.001	96		1	0.030	0.029	0.101	0.035	65		
MT-021	2	1.005	1.004	0.902	1.000	98	MT-021	2	0.030	0.030	0.102	0.035	66		
M11-021	3	1.006	1.004	0.899	1.001	102	WH 1-021	3	0.030	0.029	0.105	0.035	70		
	Mean	1.005	1.005	0.902	1.000	99		Mean	0.030	0.029	0.103	0.035	67	Positive	Photoreactive
Mean for 3 a	issays	-	_	-	-	100	Mean for 3	assays	-	_	-	-	66	Positive *3	Photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : 8-MOP

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} Singlet\ oxygen & 200\ \mu M \\ Superoxide\ anion & 200\ \mu M \end{array}$

			Singlet oxy	/gen						Superoxide	anion			-	ludaamant
		A440	(-)	A4400	(+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	l Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.994	1.005	0.925	1.000	67		1	0.031	0.030	0.061	0.035	23		
MT-001	2	1.002	1.009	0.933	1.005	68	MT-001	2	0.030	0.030	0.059	0.035	22		
M11-001	3	1.001	1.010	0.938	1.012	61	M11-001	3	0.030	0.029	0.060	0.036	23		
	Mean	0.999	1.008	0.932	1.006	65		Mean	0.030	0.029	0.060	0.036	23	Positive	Photoreactive
	1	0.990	0.994	0.909	0.989	77		1	0.030	0.029	0.064	0.034	29		
MT-009	2	0.994	0.997	0.910	0.994	80	MT-009	2	0.030	0.029	0.064	0.035	29		
M1-009	3	0.993	0.999	0.915	0.995	74	M11-009	3	0.030	0.028	0.065	0.034	31		
	Mean	0.992	0.997	0.911	0.993	77		Mean	0.030	0.029	0.065	0.034	30	Positive	Photoreactive
	1	0.986	0.996	0.911	0.992	70		1	0.030	0.029	0.068	0.034	34		
MT-016	2	0.989	0.988	0.912	0.985	73	MT-016	2	0.029	0.029	0.064	0.033	31		
M11-016	3	0.984	0.989	0.912	0.984	68	M11-016	3	0.030	0.029	0.062	0.033	29		
	Mean	0.986	0.991	0.912	0.987	70		Mean	0.030	0.029	0.065	0.033	31	Positive	Photoreactive
Mean for 3 a	ssays	-	-	=	-	71	Mean for 3	assays	-	-	=	-	28	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 A440(-) : Absorbance before light exposure at 440 nm

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm A : Mean (Blank before light exposure)

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

: Mean (Blank after light exposure)

B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Nalidixic acid

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen	·		·			Superoxide	anion			·	Indoomont
		A440	(-)	A440(+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.009	1.011	0.866	1.005	138		1	0.030	0.029	0.351	0.033	316		
MT-002	2	1.020	1.016	0.881	1.011	134	MT-002	2	0.030	0.030	0.317	0.034	282		
M11-002	3	1.014	1.018	0.880	1.013	130	M11-002	3	0.029	0.028	0.318	0.033	284		
	Mean	1.014	1.015	0.875	1.010	134		Mean	0.029	0.029	0.329	0.034	294	Positive	Photoreactive
	1	0.999	0.998	0.859	0.993	135		1	0.029	0.030	0.386	0.034	351		
MT-011	2	1.011	1.005	0.876	0.999	130	MT-011	2	0.030	0.029	0.397	0.035	362		
M11-011	3	1.005	1.003	0.874	1.000	126	M11-011	3	0.029	0.028	0.388	0.035	354		
	Mean	1.005	1.002	0.870	0.997	130		Mean	0.029	0.029	0.390	0.035	356	Positive	Photoreactive
	1	1.004	1.009	0.877	1.001	118		1	0.029	0.030	0.339	0.035	305		
MT-019	2	1.003	1.002	0.875	0.992	119	MT-019	2	0.029	0.030	0.362	0.035	328		
M11-019	3	1.007	1.003	0.878	0.994	120	M1-019	3	0.029	0.030	0.344	0.035	310		
	Mean	1.005	1.005	0.877	0.996	119		Mean	0.029	0.030	0.348	0.035	314	Positive	Photoreactive
Mean for 3 a	issays	-	-	-	-	128	Mean for 3 a	issays	-	-	-	-	321	Positive *3	Photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Nalidixic acid (Na salt)

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

20 μ M : Not determined 20 μ M : Not determined 20 μ M : Not determined 2 μ M : Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen	·	•	•		•	Superoxide	anion	·	•		Indoomont
		A440	(-)	A4400	(+)				A560	(-)	A560((+)		<u> </u>	Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.007	1.011	0.873	1.005	129		1	0.029	0.029	0.331	0.033	297		
MT-002	2	1.015	1.016	0.886	1.011	124	MT-002	2	0.030	0.030	0.342	0.034	308		
M11-002	3	1.012	1.018	0.886	1.013	121	M11-002	3	0.029	0.028	0.327	0.033	293		
	Mean	1.011	1.015	0.882	1.010	125		Mean	0.029	0.029	0.334	0.034	299	Positive	Photoreactive
	1	0.993	0.998	0.862	0.993	126		1	0.030	0.030	0.367	0.034	331		
MT-011	2	1.006	1.005	0.874	0.999	127	MT-011	2	0.030	0.029	0.389	0.035	353		
W11-011	3	1.002	1.003	0.877	1.000	120	W11-011	3	0.029	0.028	0.376	0.035	340		
	Mean	1.000	1.002	0.871	0.997	124		Mean	0.030	0.029	0.377	0.035	341	Positive	Photoreactive
	1	1.008	1.009	0.879	1.001	120		1	0.031	0.030	0.327	0.035	291		
MT-019	2	1.007	1.002	0.881	0.992	116	MT 010	2	0.030	0.030	0.397	0.035	362		
W11-019	3	1.005	1.003	0.876	0.994	120	MT-019	3	0.030	0.030	0.342	0.035	308		
	Mean	1.007	1.005	0.879	0.996	119		Mean	0.030	0.030	0.355	0.035	320	Positive	Photoreactive
Mean for 3 a	ssays	-	_	-	-	123	Mean for 3 a	issays	-	-	-	-	320	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 *2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Norfloxacin

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

		•	Singlet oxy	/gen	·					Superoxide	anion		•		Indoomont
		A440	(-)	A440(+)				A560	(-)	A560((+)		. <u></u>	Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.995	1.000	0.826	0.997	164		1	0.031	0.029	0.184	0.034	148		
MT-005	2	0.999	1.003	0.832	1.000	163	MT-005	2	0.030	0.029	0.181	0.034	147		
M11-005	3	0.997	1.002	0.828	0.998	164	M11-005	3	0.030	0.029	0.186	0.034	152		
	Mean	0.997	1.002	0.829	0.998	164		Mean	0.030	0.029	0.184	0.034	149	Positive	Photoreactive
	1	0.989	0.994	0.811	0.988	174		1	0.030	0.029	0.182	0.034	147		
MT-013	2	0.995	0.995	0.820	0.991	171	MT-013	2	0.030	0.029	0.182	0.035	148		
M11-013	3	0.992	0.995	0.819	0.990	169	M11-013	3	0.029	0.028	0.187	0.034	153		
	Mean	0.992	0.994	0.816	0.990	171		Mean	0.030	0.029	0.184	0.034	149	Positive	Photoreactive
	1	1.008	1.003	0.832	1.003	174		1	0.030	0.030	0.175	0.035	139		
MT 020	2	1.009	1.000	0.841	0.998	167	MT 020	2	0.030	0.030	0.177	0.035	142		
MT-020	3	1.003	0.999	0.834	0.997	166	MT-020	3	0.030	0.031	0.173	0.036	137		
	Mean	1.007	1.001	0.836	0.999	169		Mean	0.030	0.030	0.175	0.036	139	Positive	Photoreactive
Mean for 3 a	issays	-	-	-	-	168	Mean for 3 a	issays	-	-	-	-	146	Positive *3	Photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Ofloxacin

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 μ M : Not determined μ M : Not determined μ M : Not determined μ M : Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

•			Singlet oxy	/gen	·	•				Superoxide	anion	·			Indoomont
		A440	(-)	A440((+)				A560	(-)	A560((+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.999	1.002	0.863	0.996	130		1	0.029	0.029	0.450	0.034	416		
MT-006	2	1.003	1.006	0.870	0.999	127	MT 006	2	0.030	0.029	0.462	0.034	427		
M11-006	3	1.007	1.007	0.880	1.001	121	MT-006	3	0.029	0.028	0.450	0.033	416		
	Mean	1.003	1.005	0.871	0.999	126		Mean	0.030	0.029	0.454	0.034	420	Positive	Photoreactive
	1	1.002	1.007	0.870	1.003	128		1	0.030	0.029	0.468	0.035	432		
MT-014	2	1.003	1.012	0.875	1.008	124	MT-014	2	0.031	0.029	0.489	0.035	452		
M11-014	3	1.007	1.010	0.881	1.009	122	M11-014	3	0.030	0.029	0.469	0.037	433		
	Mean	1.004	1.010	0.875	1.006	125		Mean	0.030	0.029	0.475	0.035	439	Positive	Photoreactive
	1	0.993	1.008	0.870	1.001	118		1	0.030	0.029	0.480	0.035	445		
MT-021	2	1.002	1.004	0.881	1.000	116	MT-021	2	0.030	0.030	0.486	0.035	450		
M11-021	3	1.007	1.004	0.886	1.001	116	IVI I -02 I	3	0.029	0.029	0.479	0.035	444		
	Mean	1.001	1.005	0.879	1.000	117		Mean	0.030	0.029	0.482	0.035	446	Positive	Photoreactive
Mean for 3 a	assays	-	_	_	_	123	Mean for 3 a	assavs	_	_	_	-	435	Positive *3	Photoreactive*3

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000 A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm A : Mean (Blank before light exposure)

В

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

: Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Piroxicam

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM : Precipitation $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{ll} \mbox{Singlet oxygen} & 200 \ \mu\mbox{M} \\ \mbox{Superoxide anion} & 20 \ \mu\mbox{M} \end{array}$

		•	Singlet oxy	/gen	·	•			•	Superoxide	anion	·	•	1	udaamant
		A440	(-)	A440	(+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	l Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.008	1.011	0.825	1.005	178		1	0.033	0.029	0.043	0.036	4		
MT 002	2	1.011	1.016	0.840	1.011	166	MT 002	2	0.034	0.029	0.044	0.034	4		
MT-002	3	1.011	1.018	0.846	1.013	160	MT-003	3	0.033	0.028	0.043	0.034	4		
	Mean	1.010	1.015	0.837	1.010	168		Mean	0.033	0.029	0.044	0.035	4	Positive	Photoreactive
	1	1.012	0.998	0.840	0.993	167		1	0.032	0.030	0.041	0.034	3		
MT-011	2	1.021	1.005	0.858	0.999	158	MT-011	2	0.034	0.029	0.042	0.035	3		
W11-U11	3	1.026	1.003	0.866	1.000	155	W11-011	3	0.033	0.028	0.041	0.035	3		
	Mean	1.020	1.002	0.855	0.997	160		Mean	0.033	0.029	0.042	0.035	3	Positive	Photoreactive
	1	1.001	1.009	0.835	1.001	157		1	0.033	0.030	0.045	0.035	7		
MT-019	2	1.002	1.002	0.841	0.992	152	MT-019	2	0.033	0.030	0.045	0.035	7		
M11-019	3	1.003	1.003	0.843	0.994	151	M11-019	3	0.033	0.030	0.046	0.035	8		
	Mean	1.002	1.005	0.840	0.996	153		Mean	0.033	0.030	0.045	0.035	7	Positive	Photoreactive
Mean for 3 a	ssavs	-	-	_	-	160	Mean for 3	assays	-	-	-	_	5	Positive *3	Photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Promethazine HCl

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion				Judgement
		A440	(-)	A440((+)				A560	(-)	A560((+)	_		rudgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.981	0.999	0.933	0.992	43		1	0.030	0.029	0.070	0.034	34		
MT-004	2	0.985	1.003	0.935	0.997	43	MT-004	2	0.030	0.029	0.069	0.034	34		
M11-004	3	0.985	1.001	0.935	0.996	43	M11-004	3	0.029	0.029	0.071	0.034	37		
	Mean	0.984	1.001	0.935	0.995	43		Mean	0.030	0.029	0.070	0.034	35	Positive	Photoreactive
	1	0.974	0.992	0.922	0.989	48	'	1	0.030	0.030	0.067	0.034	32		
MT-012	2	0.978	0.999	0.925	0.994	49	MT-012	2	0.030	0.029	0.067	0.035	32		
W11-012	3	0.978	0.999	0.932	0.996	42	W11-012	3	0.029	0.029	0.068	0.034	34		
	Mean	0.977	0.997	0.926	0.993	46		Mean	0.030	0.029	0.067	0.034	33	Positive	Photoreactive
	1	0.976	0.997	0.938	0.993	34	'	1	0.029	0.029	0.068	0.033	34		
MT-018	2	0.979	0.992	0.936	0.987	39	MT 010	2	0.029	0.028	0.069	0.033	35		
M11-018	3	0.973	0.990	0.926	0.987	43	MT-018	3	0.029	0.028	0.072	0.033	38		
	Mean	0.976	0.993	0.933	0.989	39		Mean	0.029	0.028	0.070	0.033	36	Positive	Photoreactive
Mean for 3 a	ssavs	-	_	-	-	43	Mean for 3 a	assavs	-	-	-	-	35	Positive *3	Photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results <25 and Superoxide results \ge 20, <70 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Rosiglitazone

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM : Precipitation $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 20 \ \mu\text{M} \end{array}$

			Singlet oxy	ygen						Superoxide	anion				Judgement
		A440	(-)	A440	(+)				A560	(-)	A560(+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.962	1.002	0.901	0.996	54		1	0.032	0.029	0.051	0.034	14		
MT 006	2	0.968	1.006	0.904	0.999	57	MT-006	2	0.032	0.029	0.053	0.034	16		/
MT-006	3	0.966	1.007	0.900	1.001	61	M11-006	3	0.032	0.028	0.053	0.033	16		/
	Mean	0.965	1.005	0.902	0.999	57		Mean	0.032	0.029	0.052	0.034	15	Positive	
	1	0.966	1.007	0.907	1.003	55		1	0.032	0.029	0.055	0.035	17		
MT-014	2	0.969	1.012	0.909	1.008	56	MT-014	2	0.032	0.029	0.055	0.035	17		
W11-014	3	0.968	1.010	0.912	1.009	52	W11-014	3	0.031	0.029	0.053	0.037	16		
	Mean	0.968	1.010	0.910	1.006	54		Mean	0.032	0.029	0.054	0.035	17	Positive	
	1	0.965	1.008	0.909	1.001	51		1	0.031	0.029	0.053	0.035	16		/
MT-021	2	0.973	1.004	0.912	1.000	56	MT-021	2	0.030	0.030	0.051	0.035	15		
M11-021	3	0.966	1.004	0.906	1.001	56	M11-021	3	0.031	0.029	0.052	0.035	15		
	Mean	0.968	1.005	0.909	1.000	54		Mean	0.031	0.029	0.052	0.035	15	Positive	
Mean for 3 a	ssavs	-	_	_	_	55	Mean for 3 a	assays	_	_	_	-	16	Positive *3	1/

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm

A440(+) : Absorbance after light exposure at 440 nm

A : Mean (Blank before light exposure)

*2 : increase of A560 x10³ = (A560(+) - A560(-) - (B-A)) ×1000

A560(-) : Absorbance after light exposure at 560 nm

A560(+) : Absorbance after light exposure at 560 nm

A : Mean (Blank before light exposure)

В

Judged by Original Criteria:

В

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

: Mean (Blank after light exposure)

: Mean (Blank after light exposure)

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results <25 and Superoxide results \ge 20, <70 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Tetracycline

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

Solution $20 \mu M$: Not determined Solution $20 \mu M$: Not determined

2 μM : Not determined 2 μM : Not determined

Test concentration

 $\begin{array}{cc} Singlet\ oxygen & 200\ \mu M \\ Superoxide\ anion & 200\ \mu M \end{array}$

			Singlet oxy	ygen						Superoxide	anion				Judgement
		A440	(-)	A440	(+)				A560	(-)	A560((+)	_		Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.999	0.999	0.858	0.992	135		1	0.034	0.029	0.185	0.034	146		
MT-004	2	1.000	1.003	0.860	0.997	134	MT 004	2	0.034	0.029	0.187	0.034	148		
M11-004	3	0.995	1.001	0.857	0.996	133	MT-004	3	0.034	0.029	0.182	0.034	143		
	Mean	0.998	1.001	0.858	0.995	134		Mean	0.034	0.029	0.185	0.034	146	Positive	Photoreactive
	1	0.989	0.992	0.857	0.989	129		1	0.036	0.030	0.144	0.034	103		
MT-012	2	0.998	0.999	0.864	0.994	131	MT-012	2	0.033	0.029	0.141	0.035	103		
M11-012	3	0.991	0.999	0.860	0.996	127	M11-012	3	0.033	0.029	0.134	0.034	97		
	Mean	0.993	0.997	0.860	0.993	129		Mean	0.034	0.029	0.140	0.034	101	Positive	Photoreactive
	1	0.980	0.997	0.850	0.993	127		1	0.034	0.029	0.164	0.033	125		
MT-018	2	0.989	0.992	0.853	0.987	131	MT 010	2	0.034	0.028	0.166	0.033	127		
M11-018	3	0.986	0.990	0.854	0.987	128	MT-018	3	0.034	0.028	0.157	0.033	118		
	Mean	0.985	0.993	0.852	0.989	129		Mean	0.034	0.028	0.162	0.033	123	Positive	Photoreactive
Mean for 3 a	issavs	_	_	_	_	131	Mean for 3	assavs	_	_	-	_	123	Positive *3	Photoreactive*3

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

A560(-) : Absorbance before light exposure at 560 nm
A560(+) : Absorbance after light exposure at 560 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results <25 and Superoxide results \ge 20, <70 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Anthracene

Solubility

Singlet oxygen 200 μM : Precipitation Superoxide anion 200 μM : Precipitation 20 μM : Precipitation 2 20 μM : Precipitation 2

2 μM : Solution 2 μM : Solution

Test concentration

 $\begin{array}{ccc} \text{Singlet oxygen} & 2 \ \mu\text{M} \\ \text{Superoxide anion} & 2 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion				
		A440	(-)	A440(+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.011	1.010	0.991	0.995	4		1	0.031	0.031	0.041	0.035	4		
MT 000	2	1.007	1.012	0.986	0.997	6	MT 000	2	0.032	0.031	0.041	0.036	4		
MT-008	3	1.012	1.011	0.992	0.997	5	MT-008	3	0.031	0.030	0.040	0.035	4		
	Mean	1.010	1.011	0.990	0.996	5		Mean	0.032	0.031	0.041	0.036	4	Inconclusive	(Non-photoreactive)
	1	1.006	1.002	0.995	0.997	4		1	0.028	0.030	0.037	0.035	5		
MT-015	2	1.013	1.007	1.002	1.004	4	MT-015	2	0.029	0.030	0.037	0.035	4		
W11-013	3	1.014	1.006	1.004	0.995	2	W11-013	3	0.028	0.029	0.036	0.034	4		
	Mean	1.011	1.005	1.000	0.998	3		Mean	0.029	0.030	0.037	0.034	4	Inconclusive	(Non-photoreactive)
	1	0.996	1.001	0.988	0.994	2		1	0.029	0.030	0.037	0.034	4		
MT 022	2	1.000	1.000	0.988	0.992	6	MT 022	2	0.028	0.030	0.037	0.035	4		
MT-022	3	1.001	0.996	0.990	0.993	5	MT-022	3	0.028	0.029	0.037	0.034	3		
	Mean	0.999	0.999	0.988	0.993	4		Mean	0.028	0.029	0.037	0.034	4	Inconclusive	(Non-photoreactive)
Mean for 3 a	ssays	-	-	-	-	4	Mean for 3 a	assays	-	_	-	-	4	Inconclusive *3	(Non-photoreactive)*3

*1 : decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

*2 : increase of A560 x10³ = (A560(+) - A560(-) - (B-A)) ×1000 A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm A : Mean (Blank before light exposure) B : Mean (Blank after light exposure)

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

A440(-)

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

: Absorbance before light exposure at 440 nm

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory :

Chemical Name : Avobenzone

Solubility

Singlet oxygen 200 μM : Precipitation Superoxide anion 200 μM : Precipitation 20 μM : Solution 20 μM : Solution 2 μM: Not determined 2 μM: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 20 \ \mu\text{M} \\ \text{Superoxide anion} & 20 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion				ludgement
		A440	(-)	A440(+)	_			A560	(-)	A560	(+)			ruagement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.011	1.000	0.950	0.997	56		1	0.066	0.029	0.084	0.034	13		
MT 005	2	1.024	1.003	0.960	1.000	61	MT-005	2	0.066	0.029	0.084	0.034	13		
M1-005	MT-005 3	1.016	1.002	0.955	0.998	58	M11-003	3	0.065	0.029	0.083	0.034	13		
	Mean	1.017	1.002	0.955	0.998	58		Mean	0.066	0.029	0.084	0.034	13	Positive	Photoreactive
	1	1.014	0.994	0.955	0.988	55		1	0.071	0.029	0.085	0.034	9		
MT-013	2	1.026	0.995	0.960	0.991	61	MT-013	2	0.072	0.029	0.086	0.035	9		
M11-013	3	1.020	0.995	0.951	0.990	65	M1-013	3	0.071	0.028	0.086	0.034	10		
	Mean	1.020	0.994	0.956	0.990	60		Mean	0.071	0.029	0.086	0.034	9	Positive	Photoreactive
	1	1.031	1.003	0.966	1.003	63		1	0.058	0.030	0.083	0.035	18		
MT 020	2	1.032	1.000	0.964	0.998	66	MT 020	2	0.059	0.030	0.081	0.035	17		
MT-020 2 3	1.038	0.999	0.969	0.997	67	MT-020	3	0.058	0.031	0.083	0.036	19			
	Mean	1.034	1.001	0.966	0.999	65		Mean	0.058	0.030	0.082	0.036	18	Positive	Photoreactive
Mean for 3 a	issays	-	-	-	-	61	Mean for 3	assays	-	_	-	-	13	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm A560(-)
A440(+) : Absorbance after light exposure at 440 nm A560(+)
A : Mean (Blank before light exposure)
A : Mean (Blank after light exposure)
B : Mean (Blank after light exposure)
B

*2 : increase of A560 x10³ = (A560(+) -A560(-) - (B-A)) ×1000

: Absorbance before light exposure at 560 nm : Absorbance after light exposure at 560 nm : Mean (Blank before light exposure)

: Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Bithionol

Solubility

Singlet oxygen 200 μM: Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

		·	Singlet oxy	/gen	·				·	Superoxide	anion				Indoomont
		A440	(-)	A440(+)				A560	(-)	A560(+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.955	1.002	0.869	0.996	80		1	0.083	0.029	0.122	0.034	34		
MT-006	2	0.960	1.006	0.875	0.999	79	MT-006	2	0.083	0.029	0.122	0.034	34		
M11-006	3	0.963	1.007	0.874	1.001	84		3	0.082	0.028	0.122	0.033	35		
	Mean	0.959	1.005	0.872	0.999	81		Mean	0.082	0.029	0.122	0.034	34	Positive	Photoreactive
	1	0.928	1.007	0.857	1.003	67		1	0.081	0.029	0.117	0.035	30		
MT-014	2	0.942	1.012	0.870	1.008	68	MT-014	2	0.081	0.029	0.116	0.035	29		
W11-014	3	0.936	1.010	0.862	1.009	70	W11-014	3	0.080	0.029	0.116	0.037	30		
	Mean	0.935	1.010	0.863	1.006	68		Mean	0.080	0.029	0.116	0.035	30	Positive	Photoreactive
	1	0.935	1.008	0.857	1.001	72		1	0.080	0.029	0.119	0.035	33		
MT-021	2	0.946	1.004	0.870	1.000	71	MT-021	2	0.080	0.030	0.119	0.035	33		
IVI I -02 I	3	0.945	1.004	0.868	1.001	72	M11-021	3	0.080	0.029	0.120	0.035	34		
	Mean	0.942	1.005	0.865	1.000	72		Mean	0.080	0.029	0.120	0.035	33	Positive	Photoreactive
Mean for 3 a	issays	-	-	=	-	74	Mean for 3 a	assays	-	-	-	-	32	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

(Photoreactive), (Weakly photoreactive), (Non-photoreactive): Ros assay was conducted at 2 µM due to precipitation at 20µM and 200µM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results Superoxide results <70), weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), or Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 µM were not used for the judgment of integrated results or data analyses.</p>

^{*3:} Final judgment based on the mean value of three assays

Laboratory :

Chemical Name : Hexachlorophene

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{ll} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion				Judgement
		A440	(-)	A440(+)				A560	(-)	A560((+)	_		rudgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.911	1.000	0.682	0.997	225		1	0.056	0.029	0.072	0.034	10		
MT 005	MT-005	0.927	1.003	0.696	1.000	227	MT-005	2	0.056	0.029	0.072	0.034	10		
3	0.938	1.002	0.704	0.998	230	W11-005	3	0.055	0.029	0.071	0.034	11			
	Mean	0.925	1.002	0.694	0.998	227		Mean	0.056	0.029	0.072	0.034	10	Positive	Photoreactive
	1	0.875	0.994	0.650	0.988	221		1	0.054	0.029	0.067	0.034	8	,	
MT-013	2	0.901	0.995	0.668	0.991	229	MT-013	2	0.055	0.029	0.067	0.035	8		
W11-013	3	0.909	0.995	0.677	0.990	228	M11-013	3	0.054	0.028	0.067	0.034	8		
	Mean	0.895	0.994	0.665	0.990	226		Mean	0.054	0.029	0.067	0.034	8	Positive	Photoreactive
	1	0.911	1.003	0.694	1.003	215		1	0.056	0.030	0.068	0.035	6	,	
MT 020	2	0.926	1.000	0.705	0.998	219	MT-020	2	0.055	0.030	0.068	0.035	6		
MT-020	3	0.932	0.999	0.713	0.997	217	W11-020	3	0.055	0.031	0.068	0.036	7		
	Mean	0.923	1.001	0.704	0.999	217		Mean	0.055	0.030	0.068	0.036	6	Positive	Photoreactive
Mean for 3 a	issays	-	-	-	-	223	Mean for 3	assays	-	-	-	-	8	Positive *3	Photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Rose bengal

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

		•	Singlet oxy	/gen	·	•				Superoxide	anion			•	Indoomant
		A440	(-)	A440(+)				A560	(-)	A560((+)		·	Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.201	1.000	0.581	0.997	617		1	2.728	0.029	2.679	0.034	No data*4		
MT-005	2	1.207	1.003	0.599	1.000	604	MT-005	2	2.759	0.029	2.689	0.034	No data*4		
M11-005	3	1.208	1.002	0.602	0.998	602	M11-005	3	2.729	0.029	2.687	0.034	No data*4		
	Mean	1.205	1.002	0.594	0.998	608		Mean	2.738	0.029	2.685	0.034	No data*4	Positive	Photoreactive
	1	1.154	0.994	0.563	0.988	587		1	2.720	0.029	2.672	0.034	No data*4		
MT-013	2	1.169	0.995	0.571	0.991	595	MT-013	2	2.757	0.029	2.686	0.035	No data*4		
W11-013	3	1.164	0.995	0.574	0.990	586	W11-013	3	2.736	0.028	2.682	0.034	No data*4		
	Mean	1.162	0.994	0.569	0.990	589		Mean	2.738	0.029	2.680	0.034	No data*4	Positive	Photoreactive
	1	1.193	1.003	0.580	1.003	611		1	2.750	0.030	2.706	0.035	No data*4		
MT-020	2	1.205	1.000	0.597	0.998	606	MT-020	2	2.735	0.030	2.703	0.035	No data*4		
IVI I -020	3	1.199	0.999	0.593	0.997	603	IVI 1-020	3	2.742	0.031	2.691	0.036	No data*4		
	Mean	1.199	1.001	0.590	0.999	607		Mean	2.742	0.030	2.700	0.036	No data*4	Positive	Photoreactive
Mean for 3 a	issays	-	_	-	-	601	Mean for 3 a	assavs	_	_	-	_	No data*4	Positive *3	Photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

: Absorbance before light exposure at 440 nm : Absorbance after light exposure at 440 nm

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)
B B

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$ A560(-) : Absorbance before light exposure at 560 nm

: Absorbance before light exposure at 560 nm : Absorbance after light exposure at 560 nm

: Mean (Blank after light exposure) B : Mean (Blank after light exposure)

Judged by Original Criteria:

A440(-)

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Aspirin

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20 \mu M$: Not determined $2 \mu M$: Not determined $2 \mu M$: Not determined $2 \mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion				ludaamant
		A440	(-)	A440(+)				A560	(-)	A560	(+)	_		ludgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.001	0.999	0.996	0.992	-1		1	0.029	0.029	0.033	0.034	-1		
MT 004	MT-004 $\frac{2}{3}$	1.003	1.003	0.998	0.997	-2	MT 004	2	0.030	0.029	0.034	0.034	-1		
M11-004	3	1.005	1.001	1.002	1.002 0.996 -2	MT-004	3	0.029	0.029	0.033	0.034	-1			
	Mean	1.003	1.001	0.999	0.995	-2		Mean	0.029	0.029	0.033	0.034	-1	Negative	Non-photoreactive
	1	0.994	0.992	0.988	0.989	2		1	0.029	0.030	0.033	0.034	-1		
MT-012	2	0.998	0.999	0.989	0.994	4	MT-012	2	0.030	0.029	0.035	0.035	0		
M11-012	3	1.002	0.999	0.996	0.996	2	M1-012	3	0.029	0.029	0.033	0.034	-1		
	Mean	0.998	0.997	0.991	0.993	3		Mean	0.029	0.029	0.034	0.034	-1	Negative	Non-photoreactive
	1	0.992	0.997	0.987	0.993	1		1	0.029	0.029	0.034	0.033	0		
MT 010	2	0.996	0.992	0.989	0.987	3	MT 010	2	0.029	0.028	0.034	0.033	0		
W11-018	MT-018 2	0.995	0.990	0.993	0.987	-2	MT-018	3	0.029	0.028	0.034	0.033	0		
	Mean	0.994	0.993	0.990	0.989	1		Mean	0.029	0.028	0.034	0.033	0	Negative	Non-photoreactive
Mean for 3 a	ssays	-	-	-	-	1	Mean for 3	assays	-	-	-	-	-1	Negative *3	Non-photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

^{*3 :} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Benzocaine

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

		•	Singlet oxy	/gen			•	<u> </u>		Superoxide	anion	·		ı	udaamant
		A440	(-)	A440	(+)	_			A560	(-)	A560((+)	_		udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.005	1.002	0.998	0.996	1		1	0.028	0.029	0.033	0.034	0		
MT-006	2	1.005	1.006	0.999	0.999	0	MT-006	2	0.029	0.029	0.034	0.034	0		
M11-006	3	1.014	1.007	1.008	1.001	0	M11-006	3	0.028	0.028	0.034	0.033	1		
	Mean	1.008	1.005	1.002	0.999	0		Mean	0.028	0.029	0.034	0.034	0	Negative	Non-photoreactive
	1	1.008	1.007	0.998	1.003	6		1	0.029	0.029	0.036	0.035	1		
MT-014	2	1.010	1.012	1.002	1.008	4	MT-014	2	0.030	0.029	0.036	0.035	1		
W11-014	3	1.010	1.010	1.003	1.009	3	W11-014	3	0.029	0.029	0.035	0.037	0		
	Mean	1.009	1.010	1.001	1.006	4		Mean	0.029	0.029	0.036	0.035	1	Negative	Non-photoreactive
	1	1.003	1.008	0.995	1.001	3		1	0.029	0.029	0.035	0.035	0	,	
MT-021	2	1.004	1.004	0.997	1.000	3	MT-021	2	0.029	0.030	0.035	0.035	0		
WH 1-021	3	1.009	1.004	1.000	1.001	3	WH 1-02 I	3	0.029	0.029	0.035	0.035	0		
	Mean	1.005	1.005	0.997	1.000	3		Mean	0.029	0.029	0.035	0.035	0	Negative	Non-photoreactive
Mean for 3 a	ssays	-	_	_	-	2	Mean for 3 a	assays	-	-	_	-	0	Negative *3	Non-photoreactive*3

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ *1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure)

: Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

: Mean (Blank after light exposure) Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

(Photoreactive), (Weakly photoreactive), (Non-photoreactive): Ros assay was conducted at 2 µM due to precipitation at 20µM and 200µM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results Superoxide results <70), weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), or Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 µM were not used for the judgment of integrated results or data analyses.</p>

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Erythromycin

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20 \mu M$: Not determined $2 \mu M$: Not determined $2 \mu M$: Not determined $2 \mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion			,	Judgement
		A440	(-)	A440((+)				A560	(-)	A560((+)		J	ruagement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.958	0.996	0.955	0.992	0		1	0.030	0.029	0.038	0.036	2		
MT-007	2	0.965	1.002	0.961	0.998	1	MT-007	2	0.031	0.029	0.038	0.035	1		
M11-00/	3	0.970	1.000	0.968	0.997	0	M11-007	3	0.030	0.028	0.038	0.034	1		
	Mean	0.964	0.999	0.961	0.996	0		Mean	0.030	0.029	0.038	0.035	1	Negative	Non-photoreactive
	1	0.974	1.002	0.968	0.997	-2		1	0.030	0.030	0.038	0.035	4		
MT-015	2	0.980	1.007	0.978	1.004	-5	MT-015	2	0.031	0.030	0.038	0.035	3		
W11-013	3	0.987	1.006	0.987	0.995	-6	W11-013	3	0.030	0.029	0.037	0.034	4		
	Mean	0.980	1.005	0.978	0.998	-4		Mean	0.030	0.030	0.038	0.034	4	Negative	Non-photoreactive
	1	0.955	1.001	0.953	0.994	-4		1	0.030	0.030	0.037	0.034	2		
MT-022	2	0.971	1.000	0.968	0.992	-3	MT-022	2	0.030	0.030	0.037	0.035	2		
WH 1-022	3	0.968	0.996	0.966	0.993	-3	IVI 1-022	3	0.030	0.029	0.037	0.034	2		
	Mean	0.965	0.999	0.962	0.993	-3		Mean	0.030	0.029	0.037	0.034	2	Negative	Non-photoreactive
Mean for 3 a	ssays	-	-	-	-	-2	Mean for 3 a	issays	-	-	-	-	2	Negative *3	Non-photoreactive*3

A440(-) : Absorbance before light exposure at 440 nm
A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory

Chemical Name Penicillin G

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 µM Superoxide anion 200 μΜ

		•	Singlet oxy	ygen	·					Superoxide	anion	·	•	•	Indeamont
		A440	(-)	A4400	(+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.004	1.002	0.998	0.996	0		1	0.031	0.029	0.041	0.034	5		
MT-006	2	1.006	1.006	0.999	0.999	0	MT-006	2	0.031	0.029	0.040	0.034	4		
M11-006	3	1.013	1.007	1.006	1.001	1	M11-006	3	0.031	0.028	0.040	0.033	4		
	Mean	1.007	1.005	1.001	0.999	0		Mean	0.031	0.029	0.040	0.034	4	Negative	Non-photoreactive
	1	1.004	1.008	0.993	1.001	5		1	0.031	0.029	0.049	0.035	11		
MT-021	2	1.007	1.004	0.997	1.000	4	MT-021	2	0.032	0.030	0.049	0.035	12		
M11-021	3	1.009	1.004	0.999	1.001	6	N11-021	3	0.031	0.029	0.047	0.035	10		
	Mean	1.007	1.005	0.996	1.000	5		Mean	0.031	0.029	0.048	0.035	11	Negative	Non-photoreactive
	1	1.001	1.002	0.992	0.997	5		1	0.031	0.029	0.055	0.036	17		
MT 022	2	1.003	0.998	0.996	0.993	4	MT 022	2	0.031	0.029	0.055	0.036	17		
MT-023	3	1.003	0.998	0.996	0.995	3	MT-023	3	0.032	0.029	0.054	0.036	15		
	Mean	1.003	0.999	0.994	0.995	4		Mean	0.031	0.029	0.055	0.036	16	Negative	Non-photoreactive
Mean for 3 a	ssavs	-	_	_	-	3	Mean for 3 a	assays	_	_	_	-	10	Negative *	Non- photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 *2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm : Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm

A440(+): Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

(Photoreactive), (Weakly photoreactive), (Non-photoreactive): Ros assay was conducted at 2 µM due to precipitation at 20µM and 200µM. Although, the results met the photoreactive criteria (Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results Superoxide results <70), weakly photoreactive criteria (Singlet oxygen results <25 and Superoxide results ≥20, <70), or Non-photoreactive criteria (Singlet oxygen results <25 and Superoxide results <20), the results shown in the parenthesis since the results at 2 µM were not used for the judgment of integrated results or data analyses.</p>

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Phenytoin

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

			Singlet oxy	/gen						Superoxide	anion				Indoomont
		A440	(-)	A440(+)				A560	(-)	A560	(+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.994	0.999	0.985	0.992	3		1	0.031	0.029	0.070	0.034	34		
MT 004	2	1.003	1.003	0.996	0.997	1	MT-004	2	0.032	0.029	0.071	0.034	34		
MT-004	3	0.998	1.001	0.989	0.996	3	M11-004	3	0.031	0.029	0.073	0.034	37		
	Mean	0.998	1.001	0.990	0.995	2		Mean	0.031	0.029	0.071	0.034	35	Positive	Weakly photoreactive
	1	0.987	0.992	0.980	0.989	3		1	0.031	0.030	0.052	0.034	16		
MT-012	2	1.001	0.999	0.990	0.994	7	MT-012	2	0.032	0.029	0.053	0.035	17		
W11-012	3	0.994	0.999	0.983	0.996	7	W11-012	3	0.031	0.029	0.053	0.034	17		
	Mean	0.994	0.997	0.984	0.993	6		Mean	0.031	0.029	0.053	0.034	17	Negative	Non-photoreactive
	1	0.987	0.997	0.979	0.993	4		1	0.030	0.029	0.059	0.033	24		
MT 010	2	0.979	0.992	0.972	0.987	3	MT 010	2	0.031	0.028	0.061	0.033	25		
MT-018	3	0.984	0.990	0.976	0.987	4	MT-018	3	0.030	0.028	0.065	0.033	29		
	Mean	0.983	0.993	0.975	0.989	4		Mean	0.030	0.028	0.062	0.033	26	Positive	Weakly photoreactive
Mean for 3 a	ssays	-	-	-	-	4	Mean for 3	assays	-	-	-	-	26	Positive *	Weakly photoreactive*3

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ *1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Bumetrizole

Solubility

Singlet oxygen Superoxide anion

200 μM: Precipitation 200 µM: Precipitation 20 µM: Solution 20 µM: Solution 2 µM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 20 μM Superoxide anion 20 μM

		·	Singlet oxy	/gen						Superoxide	anion				ludaamant
		A440	(-)	A440((+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.021	1.011	1.023	1.005	-7		1	0.067	0.029	0.070	0.033	-2		
MT-002	2	1.026	1.016	1.027	1.011	-6	MT-002	2	0.069	0.030	0.072	0.034	-2		
M11-002	3	1.023	1.018	1.024	1.013	-6	M11-002	3	0.070	0.028	0.073	0.033	-2		
	Mean	1.023	1.015	1.025	1.010	-6		Mean	0.068	0.029	0.072	0.034	-2	Inconclusive	Non-photoreactive
	1	1.017	0.998	1.028	0.993	-16	,	1	0.066	0.030	0.075	0.034	2		
MT-011	2	1.022	1.005	1.033	0.999	-16	MT-011	2	0.066	0.029	0.074	0.035	2		
W11-011	3	1.024	1.003	1.035	1.000	-16	W11-011	3	0.066	0.028	0.074	0.035	3		
	Mean	1.021	1.002	1.032	0.997	-16		Mean	0.066	0.029	0.074	0.035	2	Inconclusive	Non-photoreactive
	1	1.028	1.009	1.037	1.001	-18		1	0.055	0.030	0.069	0.035	9		
MT-019	2	1.031	1.002	1.042	0.992	-19	MT-019	2	0.056	0.030	0.070	0.035	9		
W11-019	3	1.026	1.003	1.039	0.994	-21	W11-019	3	0.056	0.030	0.070	0.035	9		
	Mean	1.028	1.005	1.039	0.996	-19		Mean	0.056	0.030	0.070	0.035	9	Inconclusive	Non-photoreactive
Mean for 3 a	ssays	-	-	=	-	-14	Mean for 3 a	assays	-	-	-	-	3	Inconclusive *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Camphor sulfonic acid

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 $20~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined $2~\mu M$: Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

			Singlet oxy	/gen						Superoxide	anion			,	udgement
		A440	(-)	A440(+)	_			A560	(-)	A560((+)		J	uugement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.012	1.005	1.006	1.000	4		1	0.031	0.030	0.034	0.035	-4		
MT-001	2	1.013	1.009	1.009	1.005	2	MT-001	2	0.031	0.030	0.034	0.035	-3		
M11-001	3	1.010	1.010	1.004	1.012	4	WH 1-00 I	3	0.031	0.029	0.034	0.036	-4		
	Mean	1.012	1.008	1.007	1.006	3		Mean	0.031	0.029	0.034	0.036	-4	Negative	Non-photoreactive
	1	1.002	0.994	0.997	0.989	1		1	0.030	0.029	0.034	0.034	-1		
MT-009	2	1.003	0.997	0.998	0.994	2	MT-009	2	0.030	0.029	0.034	0.035	-1		
W11-009	3	1.001	0.999	0.996	0.995	1	W11-009	3	0.030	0.028	0.034	0.034	-1		
	Mean	1.002	0.997	0.997	0.993	1		Mean	0.030	0.029	0.034	0.034	-1	Negative	Non-photoreactive
	1	0.993	0.996	0.985	0.992	3		1	0.030	0.029	0.034	0.034	0		
MT 016	2	0.997	0.988	0.988	0.985	4	MT-016	2	0.031	0.029	0.035	0.033	0		
MT-016	3	0.999	0.989	0.991	0.984	4	M1-016	3	0.029	0.029	0.033	0.033	-1		
	Mean	0.996	0.991	0.988	0.987	4		Mean	0.030	0.029	0.034	0.033	0	Negative	Non-photoreactive
Mean for 3 a	ssays	-	-	-	-	3	Mean for 3	assays	-	-	-	-	-2	Negative *3	Non-photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : Chlorhexidine

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

20 μM : Not determined 2 μM : Not determined 20 μM : Not determined 2 μM : Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

		•	Singlet oxy	/gen			•	<u> </u>		Superoxide	anion	·	•		Indoomont
		A440	(-)	A440((+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.932	0.999	0.900	0.992	25		1	0.033	0.029	0.052	0.034	14		
MT-004	2	0.932	1.003	0.901	0.997	25	MT-004	2	0.034	0.029	0.051	0.034	12		
M11-004	3	0.928	1.001	0.902	0.996	20	M11-004	3	0.033	0.029	0.050	0.034	12		
	Mean	0.931	1.001	0.901	0.995	23		Mean	0.033	0.029	0.051	0.034	13	Negative	Non-photoreactive
	1	0.917	0.992	0.893	0.989	20		1	0.033	0.030	0.046	0.034	8		
MT-012	2	0.922	0.999	0.894	0.994	24	MT-012	2	0.034	0.029	0.045	0.035	7		
W11-012	3	0.925	0.999	0.898	0.996	22	W11-012	3	0.033	0.029	0.044	0.034	6		
	Mean	0.921	0.997	0.895	0.993	22		Mean	0.033	0.029	0.045	0.034	7	Negative	Non-photoreactive
	1	0.911	0.997	0.890	0.993	17		1	0.032	0.029	0.049	0.033	12		
MT-018	2	0.919	0.992	0.888	0.987	27	MT-018	2	0.033	0.028	0.048	0.033	10		
W11-U18	3	0.918	0.990	0.891	0.987	23	W11-U18	3	0.033	0.028	0.047	0.033	9		
	Mean	0.916	0.993	0.889	0.989	22		Mean	0.033	0.028	0.048	0.033	10	Negative	Non-photoreactive
Mean for 3 a	ssays	-	-	-	-	22	Mean for 3 a	assays	-	-	-	-	10	Negative *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

A440(-) : Absorbance before light exposure at 440 nm

A440(+) : Absorbance after light exposure at 440 nm

A : Mean (Blank before light exposure)

*2 : increase of A560 x10³ = (A560(+) - A560(-) - (B-A)) ×1000

*3 : increase of A560 x10³ = (A560(+) - A560(-) - (B-A)) ×1000

*4 : increase of A560 x10³ = (A560(+) - A560(-) - (B-A)) ×1000

*5 : increase of A560 x10³ = (A560(+) - A560(-) - (B-A)) ×1000

*6 : Absorbance after light exposure at 560 nm

A : Mean (Blank before light exposure)

В

Judged by Original Criteria:

В

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

: Mean (Blank after light exposure)

: Mean (Blank after light exposure)

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory :

Chemical Name : Cinnamic acid

Solubility

Singlet oxygen $200 \mu M$: Solution Superoxide anion $200 \mu M$: Solution

 μ M : Not determined μ M : Not determined μ M : Not determined μ M : Not determined

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 200 \ \mu\text{M} \\ \text{Superoxide anion} & 200 \ \mu\text{M} \end{array}$

•			Singlet oxy	/gen	·	•				Superoxide	anion	·		T	udaamant
		A440	(-)	A440	(+)	_			A560	(-)	A560((+)	_		udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.999	0.996	0.995	0.992	1		1	0.029	0.029	0.044	0.036	9		
MT-007	2	1.012	1.002	1.010	0.998	-1	MT-007	2	0.029	0.029	0.044	0.035	8		
M11-007	3	1.007	1.000	1.002	0.997	1	M11-00/	3	0.028	0.028	0.043	0.034	9		
	Mean	1.006	0.999	1.002	0.996	0		Mean	0.029	0.029	0.044	0.035	9	Negative	Non-photoreactive
	1	1.008	1.002	1.002	0.997	0		1	0.029	0.030	0.043	0.035	11		
MT-015	2	1.024	1.007	1.017	1.004	0	MT-015	2	0.029	0.030	0.043	0.035	10		
M11-015	3	1.014	1.006	1.009	0.995	-2	M11-015	3	0.029	0.029	0.043	0.034	10		
	Mean	1.016	1.005	1.009	0.998	-1		Mean	0.029	0.030	0.043	0.034	10	Negative	Non-photoreactive
	1	1.000	1.001	0.992	0.994	2		1	0.029	0.030	0.041	0.034	7		
MT-022	2	0.997	1.000	0.990	0.992	2	MT-022	2	0.030	0.030	0.041	0.035	6		
WH 1-022	3	1.002	0.996	0.994	0.993	3	M11-022	3	0.029	0.029	0.042	0.034	7		
	Mean	1.000	0.999	0.992	0.993	2		Mean	0.029	0.029	0.041	0.034	7	Negative	Non-photoreactive
Mean for 3 a	ssays	-	_	_	_	0	Mean for 3 a	assays	_	_	_	-	9	Negative *3	Non-photoreactive*3

A440(+) : Absorbance after light exposure at 440 nm
A : Mean (Blank before light exposure)
B : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M : 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

 $^{{\}bf *3}$: Final judgment based on the mean value of three assays

Laboratory

Chemical Name Drometrizole

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 μM : Precipitation 2 μM : Solution 20 μM : Solution 2 μM: Not determined

Test concentration

Singlet oxygen 2 μΜ Superoxide anion 20 μΜ

			Singlet oxy	/gen						Superoxide	anion				udaamant
		A440	(-)	A440(+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.998	0.998	0.988	0.994	6		1	0.030	0.029	0.041	0.034	5		
MT 010	2	1.012	1.002	0.999	0.997	10	MT 010	2	0.031	0.029	0.041	0.035	6		
MT-010	3	1.015	1.001	1.002	0.996	9	MT-010	3	0.030	0.028	0.041	0.034	6		
	Mean	1.009	1.000	0.996	0.996	8		Mean	0.030	0.029	0.041	0.034	6	Inconclusive	(Non-photoreactive)
	1	0.996	0.996	0.989	0.992	3		1	0.030	0.029	0.041	0.034	8		
MT-016	2	1.000	0.988	0.994	0.985	3	MT-016	2	0.029	0.029	0.041	0.033	8		
M11-016	3	1.000	0.989	0.995	0.984	1	M11-016	3	0.029	0.029	0.039	0.033	6		
	Mean	0.999	0.991	0.992	0.987	2		Mean	0.029	0.029	0.041	0.033	7	Inconclusive	(Non-photoreactive)
	1	1.004	1.002	0.995	0.997	5		1	0.030	0.029	0.043	0.036	6		
MT 022	2	1.003	0.998	0.996	0.993	4	MT 022	2	0.029	0.029	0.043	0.036	7		
MT-023	3	1.004	0.998	0.997	0.995	3	MT-023	3	0.029	0.029	0.043	0.036	7		
	Mean	1.004	0.999	0.996	0.995	4		Mean	0.029	0.029	0.043	0.036	7	Inconclusive	(Non-photoreactive)
Mean for 3 a	ssays	-	_	-	-	5	Mean for 3 a	assays	-	-	-	-	7	Inconclusive *3	(Non-photoreactive)*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name L-Histidine

Solubility

Singlet oxygen 200 μM : Solution Superoxide anion 200 μM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

		·	Singlet oxy	/gen					·	Superoxide	anion				Indoomont
		A440	(-)	A440(+)				A560	(-)	A560((+)			Judgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.995	1.000	0.987	0.997	4		1	0.030	0.029	0.086	0.034	51		
MT-005	2	0.997	1.003	0.990	1.000	4	MT 005	2	0.030	0.029	0.085	0.034	50		
M11-005	3	0.995	1.002	0.987	0.998	4	MT-005	3	0.029	0.029	0.086	0.034	52		
	Mean	0.996	1.002	0.988	0.998	4		Mean	0.029	0.029	0.085	0.034	51	Positive	Weakly photoreactive
	1	1.011	0.994	1.006	0.988	1		1	0.030	0.029	0.083	0.034	48		
MT-013	2	1.011	0.995	1.001	0.991	7	MT-013	2	0.030	0.029	0.082	0.035	47		
W11-013	3	1.012	0.995	1.006	0.990	2	W11-013	3	0.029	0.028	0.082	0.034	48		
	Mean	1.011	0.994	1.004	0.990	3		Mean	0.030	0.029	0.082	0.034	48	Positive	Weakly photoreactive
	1	1.015	1.003	1.010	1.003	3		1	0.029	0.030	0.083	0.035	48		
MT-020	2	1.018	1.000	1.012	0.998	4	MT-020	2	0.029	0.030	0.083	0.035	48		
M11-020	3	1.021	0.999	1.014	0.997	5	M11-020	3	0.029	0.031	0.083	0.036	49		
	Mean	1.018	1.001	1.012	0.999	4		Mean	0.029	0.030	0.083	0.036	48	Positive	Weakly photoreactive
Mean for 3 a	ssays	-	-	-	_	4	Mean for 3 a	assays	-	-	-	-	49	Positive *	Weakly photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 *2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-)

: Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Methylbenzylidene camphor

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 µM: Solution 20 µM: Solution 2 µM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 20 μM Superoxide anion 20 μM

			Singlet oxy	/gen						Superoxide	anion				udgement
		A440	(-)	A440(+)				A560	(-)	A560((+)			uagement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.011	1.011	1.010	1.005	-4		1	0.029	0.029	0.032	0.033	-2		
MT-002	2	1.008	1.016	1.008	1.011	-4	MT-002	2	0.029	0.030	0.032	0.034	-2		
M11-002	3	1.005	1.018	1.004	1.013	-4	M11-002	3	0.028	0.028	0.031	0.033	-2		
	Mean	1.008	1.015	1.007	1.010	-4		Mean	0.029	0.029	0.032	0.034	-2	Inconclusive	Non-photoreactive
	1	0.998	0.998	0.996	0.993	-3		1	0.029	0.030	0.032	0.034	-2		
MT-011	2	1.002	1.005	1.001	0.999	-4	MT-011	2	0.029	0.029	0.033	0.035	-3		
W11-011	3	0.999	1.003	0.997	1.000	-3	W11-011	3	0.028	0.028	0.032	0.035	-3		
	Mean	1.000	1.002	0.998	0.997	-3		Mean	0.029	0.029	0.032	0.035	-3	Inconclusive	Non-photoreactive
	1	0.999	1.009	0.997	1.001	-7		1	0.028	0.030	0.032	0.035	-1		
MT-019	2	1.003	1.002	1.001	0.992	-8	MT 010	2	0.028	0.030	0.032	0.035	-1		
W11-019	3	1.001	1.003	1.000	0.994	-8	MT-019	3	0.028	0.030	0.033	0.035	0		
	Mean	1.001	1.005	0.999	0.996	-8		Mean	0.028	0.030	0.033	0.035	-1	Inconclusive	Non-photoreactive
Mean for 3 a	ssavs	-	-	-	_	-5	Mean for 3 a	assavs	_	_	-	_	-2	Inconclusive *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000 *2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm : Absorbance after light exposure at 440 nm

A560(-) A560(+)Α

: Absorbance before light exposure at 560 nm : Absorbance after light exposure at 560 nm : Mean (Blank before light exposure)

: Mean (Blank before light exposure) : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

A440(+)

Α

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Octrizole

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation $20 \,\mu M$: Solution 20 µM: Solution 2 µM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 20 μM Superoxide anion 20 μM

			Singlet oxy	ygen						Superoxide	anion				udgement
		A440	(-)	A440	(+)				A560	(-)	A560((+)			uagement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.033	1.011	1.040	1.005	-12		1	0.063	0.029	0.071	0.033	3		
MT-002	2	1.028	1.016	1.036	1.011	-13	MT-002	2	0.066	0.030	0.075	0.034	4		
M11-002	3	1.033	1.018	1.042	1.013	-14	M11-002	3	0.066	0.028	0.077	0.033	5		
	Mean	1.031	1.015	1.040	1.010	-13		Mean	0.065	0.029	0.074	0.034	4	Inconclusive	Non-photoreactive
	1	1.011	0.998	1.017	0.993	-11		1	0.060	0.030	0.072	0.034	6		
MT-011	2	1.011	1.005	1.016	0.999	-11	MT-011	2	0.062	0.029	0.073	0.035	5		
M11-011	3	1.013	1.003	1.020	1.000	-12	M11-011	3	0.061	0.028	0.072	0.035	6		
	Mean	1.012	1.002	1.018	0.997	-11		Mean	0.061	0.029	0.072	0.035	6	Inconclusive	Non-photoreactive
	1	1.023	1.009	1.029	1.001	-14		1	0.063	0.030	0.079	0.035	11		
MT-019	2	1.032	1.002	1.037	0.992	-15	MT-019	2	0.063	0.030	0.079	0.035	11		
M1-019	3	1.031	1.003	1.044	0.994	-22	M11-019	3	0.063	0.030	0.079	0.035	11		
	Mean	1.029	1.005	1.037	0.996	-17		Mean	0.063	0.030	0.079	0.035	11	Inconclusive	Non-photoreactive
Mean for 3 a	issavs	-	_	-	-	-14	Mean for 3	assavs	_	-	-	-	7	Inconclusive *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Octyl methacrylate

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation

20 µM: Solution 20 µM: Solution 2 µM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 20 μM Superoxide anion 20 μM

•	·		Singlet oxy	/gen	·		•			Superoxide	anion	·		т	udaamant
		A440	(-)	A440(+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.989	0.994	0.974	0.988	11		1	0.030	0.029	0.034	0.034	0		
MT-013	2	0.996	0.995	0.981	0.991	10	MT 012	2	0.030	0.029	0.035	0.035	0		
M11-013	3	0.992	0.995	0.980	0.990	8	MT-013	3	0.030	0.028	0.035	0.034	-1		
	Mean	0.992	0.994	0.979	0.990	10		Mean	0.030	0.029	0.035	0.034	0	Inconclusive	Non-photoreactive
	1	1.008	1.003	1.002	1.003	4		1	0.030	0.030	0.035	0.035	-1		
MT-020	2	1.005	1.000	1.001	0.998	2	MT-020	2	0.029	0.030	0.036	0.035	0		
M11-020	3	1.006	0.999	0.998	0.997	7	M11-020	3	0.029	0.031	0.035	0.036	0		
	Mean	1.006	1.001	1.000	0.999	4		Mean	0.029	0.030	0.035	0.036	0	Inconclusive	Non-photoreactive
	1	1.001	1.002	0.991	0.997	7		1	0.029	0.029	0.035	0.036	-1		
MT-023	2	1.001	0.998	0.991	0.993	6	MT-023	2	0.028	0.029	0.035	0.036	0		
M11-023	3	1.007	0.998	0.998	0.995	4	M11-023	3	0.028	0.029	0.035	0.036	-1		
	Mean	1.003	0.999	0.993	0.995	6		Mean	0.029	0.029	0.035	0.036	-1	Inconclusive	Non-photoreactive
Mean for 3 a	ssays	-	-	-	-	7	Mean for 3 a	assays	-	-	-	-	0	Inconclusive *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$

Α

В

: Absorbance before light exposure at 560 nm

A440(-) : Absorbance before light exposure at 440 nm A440(+): Absorbance after light exposure at 440 nm : Mean (Blank before light exposure) В : Mean (Blank after light exposure)

A560(-) A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Octyl methoxycinnamate

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation $20 \,\mu M$: Solution 20 µM: Solution 2 µM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 20 μM Superoxide anion 20 μM

			Singlet oxy	ygen						Superoxide	anion				udgement
		A440	(-)	A440	(+)	<u></u>			A560	(-)	A560((+)			uagement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.009	0.999	1.002	0.992	2		1	0.045	0.029	0.046	0.034	-5		
MT-004	2	1.012	1.003	1.003	0.997	3	MT-004	2	0.046	0.029	0.046	0.034	-5		
M11-004	3	1.012	1.001	1.003	0.996	3	M11-004	3	0.045	0.029	0.046	0.034	-5		
	Mean	1.011	1.001	1.003	0.995	3		Mean	0.046	0.029	0.046	0.034	-5	Inconclusive	Non-photoreactive
	1	1.010	0.992	1.005	0.989	1	'	1	0.046	0.030	0.046	0.034	-5		
MT-012	2	1.017	0.999	1.010	0.994	3	MT-012	2	0.046	0.029	0.047	0.035	-4		
M11-012	3	1.016	0.999	1.011	0.996	1	M11-012	3	0.046	0.029	0.046	0.034	-5		
	Mean	1.014	0.997	1.009	0.993	2		Mean	0.046	0.029	0.046	0.034	-5	Inconclusive	Non-photoreactive
	1	1.011	0.997	1.003	0.993	4		1	0.046	0.029	0.047	0.033	-4		
MT-018	2	1.009	0.992	1.001	0.987	4	MT-018	2	0.046	0.028	0.046	0.033	-5		
M11-018	3	1.011	0.990	1.004	0.987	3	W11-018	3	0.046	0.028	0.047	0.033	-4		
	Mean	1.010	0.993	1.003	0.989	4		Mean	0.046	0.028	0.047	0.033	-4	Inconclusive	Non-photoreactive
Mean for 3 a	ssavs	-	_	-	-	3	Mean for 3 a	assavs	_	-	-	_	-5	Inconclusive *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name Octyl salicylate

Solubility

Singlet oxygen 200 μM: Precipitation Superoxide anion 200 µM: Precipitation 20 µM: Solution 20 µM: Solution 2 µM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 20 μM Superoxide anion 20 μM

			Singlet oxy	/gen						Superoxide	anion			T.	udaamant
		A440	(-)	A4400	(+)				A560	(-)	A560(+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	l Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.004	0.996	1.004	0.992	-3		1	0.036	0.029	0.042	0.036	0		
MT 007	2	1.014	1.002	1.012	0.998	-1	MT 007	2	0.037	0.029	0.042	0.035	0		
MT-007	3	1.010	1.000	1.011	0.997	-4	MT-007	3	0.036	0.028	0.042	0.034	0		
	Mean	1.009	0.999	1.009	0.996	-3		Mean	0.036	0.029	0.042	0.035	0	Inconclusive	Non-photoreactive
	1	1.009	1.002	1.005	0.997	-3		1	0.036	0.030	0.041	0.035	1		
MT-015	2	1.020	1.007	1.016	1.004	-3	MT-015	2	0.037	0.030	0.041	0.035	0		
W11-013	3	1.017	1.006	1.015	0.995	-4	W11-013	3	0.036	0.029	0.041	0.034	0		
	Mean	1.015	1.005	1.012	0.998	-3		Mean	0.037	0.030	0.041	0.034	0	Inconclusive	Non-photoreactive
	1	1.014	1.001	1.011	0.994	-3		1	0.036	0.030	0.041	0.034	0		
MT-022	2	1.012	1.000	1.008	0.992	-3	MT-022	2	0.037	0.030	0.040	0.035	-1		
M11-022	3	1.013	0.996	1.010	0.993	-4	M11-022	3	0.036	0.029	0.041	0.034	0		
	Mean	1.013	0.999	1.010	0.993	-3		Mean	0.036	0.029	0.041	0.034	0	Inconclusive	Non-photoreactive
Mean for 3 a	issays	-	-	-	-	-3	Mean for 3	assays	-	-	-	-	0	Inconclusive *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name PABA

Solubility

Singlet oxygen 200 µM: Solution Superoxide anion 200 µM: Solution 20 μM: Not determined 2 μM: Not determined 20 μM: Not determined 2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

•			Singlet oxy	/gen		•	•			Superoxide	anion		•	T	udaamant
		A440	(-)	A440(+)				A560	(-)	A560(+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.997	0.996	0.994	0.992	1		1	0.030	0.029	0.034	0.036	-2		
MT-007	2	1.001	1.002	1.014	0.998	-16	MT 007	2	0.029	0.029	0.034	0.035	-1		
M11-007	3	1.000	1.000	0.996	0.997	1	MT-007	3	0.029	0.028	0.033	0.034	-1		
	Mean	1.000	0.999	1.001	0.996	-5		Mean	0.029	0.029	0.034	0.035	-1	Negative	Non-photoreactive
	1	1.007	1.002	1.002	0.997	-2		1	0.030	0.030	0.034	0.035	0		
MT-015	2	1.013	1.007	1.009	1.004	-3	MT-015	2	0.030	0.030	0.034	0.035	0		
M11-015	3	1.012	1.006	1.008	0.995	-3	M11-015	3	0.029	0.029	0.033	0.034	0		
	Mean	1.011	1.005	1.006	0.998	-3		Mean	0.030	0.030	0.033	0.034	0	Negative	Non-photoreactive
	1	1.003	1.001	0.993	0.994	4		1	0.029	0.030	0.033	0.034	-1		
MT-022	2	1.005	1.000	0.996	0.992	3	MT 022	2	0.030	0.030	0.033	0.035	-1		
M11-022	3	1.000	0.996	0.991	0.993	3	MT-022	3	0.030	0.029	0.033	0.034	-1		
	Mean	1.003	0.999	0.993	0.993	3		Mean	0.030	0.029	0.033	0.034	-1	Negative	Non-photoreactive
Mean for 3 a	issays	-	-	=	-	-2	Mean for 3 a	assavs	_	-	-	-	-1	Negative *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$: Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm : Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

A440(-)

A440(+)

В

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory

Chemical Name SDS

Solubility

Singlet oxygen 200 µM: Solution Superoxide anion

200 µM: Solution

20 μM: Not determined 2 μM: Not determined

20 μM: Not determined

2 μM: Not determined

Test concentration

Singlet oxygen 200 μM Superoxide anion 200 μΜ

			Singlet oxy	/gen						Superoxide	anion				Judgement
		A440	(-)	A440(+)	_			A560	(-)	A560	(+)	_		ruugement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	0.982	0.996	0.975	0.992	4		1	0.132	0.029	0.145	0.036	7		
MT-007	2	0.986	1.002	0.977	0.998	5	MT-007	2	0.132	0.029	0.143	0.035	5		
M11-00/	3	0.983	1.000	0.973	0.997	7	WH 1-00 /	3	0.132	0.028	0.141	0.034	3		
	Mean	0.984	0.999	0.975	0.996	5		Mean	0.132	0.029	0.143	0.035	5	Negative	Non-photoreactive
	1	0.993	1.002	0.981	0.997	6		1	0.115	0.030	0.125	0.035	6		
MT-015	2	0.996	1.007	0.983	1.004	6	MT-015	2	0.115	0.030	0.125	0.035	6		
W11-013	3	0.991	1.006	0.980	0.995	4	W11-013	3	0.115	0.029	0.124	0.034	5		
	Mean	0.994	1.005	0.981	0.998	5		Mean	0.115	0.030	0.125	0.034	6	Negative	Non-photoreactive
	1	0.978	1.001	0.966	0.994	6	'	1	0.097	0.030	0.117	0.034	15		
MT-022	2	0.983	1.000	0.968	0.992	9	MT-022	2	0.098	0.030	0.116	0.035	14		
WH 1-022	3	0.985	0.996	0.970	0.993	9	WH-022	3	0.097	0.029	0.114	0.034	12		
	Mean	0.982	0.999	0.968	0.993	8		Mean	0.097	0.029	0.116	0.034	14	Negative	Non-photoreactive
Mean for 3 a	issays	-	-	-	-	6	Mean for 3	assays	-	-	-	-	8	Negative *3	Non-photoreactive*3

*1 : decrease of A440 x10³ = (A440(-) - A440(+) - (A-B)) ×1000

*2 : increase of A560 x10³ = $(A560(+) - A560(-) - (B-A)) \times 1000$ A440(-) : Absorbance before light exposure at 440 nm A560(-) : Absorbance before light exposure at 560 nm A440(+): Absorbance after light exposure at 440 nm A560(+): Absorbance after light exposure at 560 nm : Mean (Blank before light exposure) : Mean (Blank before light exposure) Α В : Mean (Blank after light exposure) В : Mean (Blank after light exposure)

Judged by Original Criteria:

Positive: Singlet oxygen results ≥25 or Superoxide anion results ≥20 at 200, 20 or 2 uM Negative: Singlet oxygen results <25 and Superoxide anion results <20 at 200 µM Inconclusive: The results does not meet the positive or negative criterion

Judged by Criteria for Proposed Protocol:

Photoreactive: Singlet oxygen results ≥25 and Superoxide results ≥70, Singlet oxygen results <25 and/or interference such as precipitation or coloration, and Superoxide results ≥70, Singlet oxygen results ≥25 and Superoxide results <70 and/or interference such as precipitation or coloration, at 200 μM: 20 μM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 µM

Weakly photoreactive: Singlet oxygen results <25 and Superoxide results ≥20, <70 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

Non-photoreactive: Singlet oxygen results <25 and Superoxide results <20 at 200 µM: 20 µM without photodegradation is used for judgment only when precipitation or coloration is observed at 200 uM

^{*3:} Final judgment based on the mean value of three assays

Laboratory : 3

Chemical Name : UV-571

Solubility

Singlet oxygen 200 μM : Precipitation Superoxide anion 200 μM : Precipitation 20 μM : Precipitation 2 μM : Solution 20 μM : Precipitation 2 μM : Solution

Test concentration

 $\begin{array}{cc} \text{Singlet oxygen} & 2 \ \mu\text{M} \\ \text{Superoxide anion} & 2 \ \mu\text{M} \end{array}$

		·	Singlet oxy	/gen					·	Superoxide	anion	·			lu da am ant
		A440	(-)	A440(+)				A560	(-)	A560((+)			udgement
Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*1	Experimental No.	Run#	Test Chemical	Blank	Test Chemical	Blank	Results*2	Judged by Original Criteria	Judged by Criteria for Proposed Protocol
	1	1.009	1.010	0.999	0.995	-6		1	0.032	0.031	0.038	0.035	1		
MT-008	2	1.015	1.012	1.004	0.997	-4	MT-008	2	0.032	0.031	0.038	0.036	1		
M11-008	3	1.010	1.011	0.999	0.997	-4	M1-008	3	0.032	0.030	0.038	0.035	1		
	Mean	1.011	1.011	1.001	0.996	-5		Mean	0.032	0.031	0.038	0.036	1	Inconclusive	(Non-photoreactive)
	1	1.013	1.002	1.008	0.997	-2		1	0.031	0.030	0.037	0.035	2		
MT-015	2	1.016	1.007	1.013	1.004	-4	MT-015	2	0.031	0.030	0.036	0.035	2		
W11-013	3	1.012	1.006	1.010	0.995	-5	W11-013	3	0.030	0.029	0.035	0.034	1		
	Mean	1.014	1.005	1.011	0.998	-4		Mean	0.031	0.030	0.036	0.034	2	Inconclusive	(Non-photoreactive)
	1	1.002	1.001	1.001	0.994	-5		1	0.032	0.030	0.038	0.034	1		
MT-022	2	1.004	1.000	1.003	0.992	-4	MT-022	2	0.030	0.030	0.036	0.035	1		
M11-022	3	1.005	0.996	1.002	0.993	-3	M11-022	3	0.030	0.029	0.036	0.034	1		
	Mean	1.004	0.999	1.002	0.993	-4		Mean	0.031	0.029	0.037	0.034	1	Inconclusive	(Non-photoreactive)
Mean for 3 a	ssays	-	-	-	_	-4	Mean for 3 a	assays	-	-	-	-	1	Inconclusive *3	(Non-photoreactive)*3

: Absorbance before light exposure at 440 nm
: Absorbance after light exposure at 440 nm
: Mean (Blank before light exposure)
: Mean (Blank after light exposure)
: Mean (Blank after light exposure)
: Mean (Blank after light exposure)

B
: Mean (Blank after light exposure)

B
: Mean (Blank after light exposure)

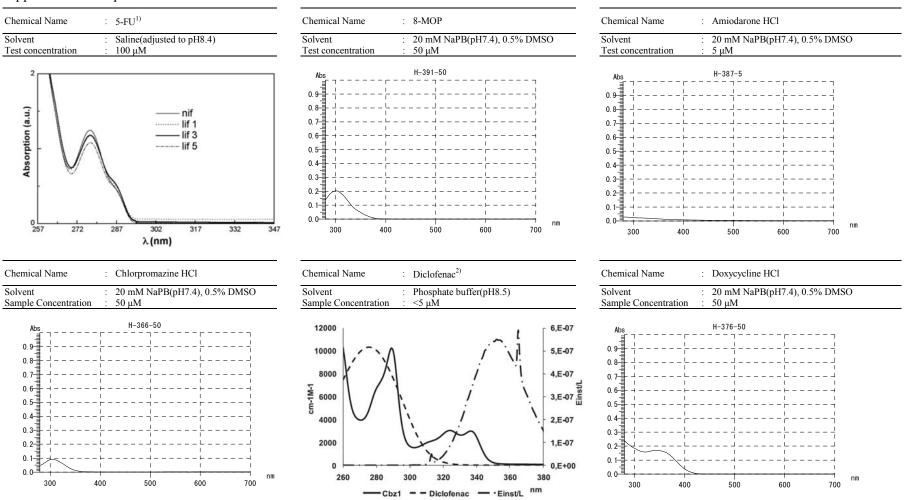
Judged by Original Criteria:

A440(+)

Α

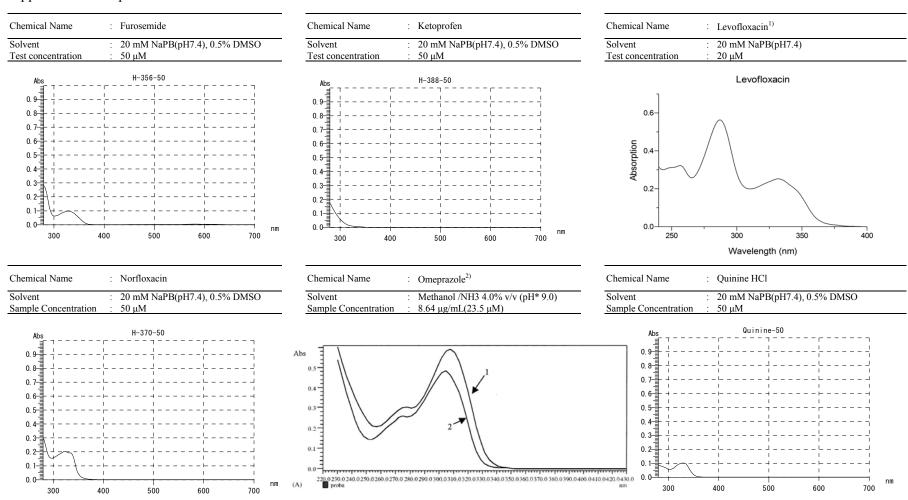
В

Positive : Singlet oxygen results \geq 25 or Superoxide anion results \geq 20 at 200, 20 or 2 μ M Negative : Singlet oxygen results \leq 25 and Superoxide anion results \leq 20 at 200 μ M Inconclusive : The results does not meet the positive or negative criterion


Judged by Criteria for Proposed Protocol:

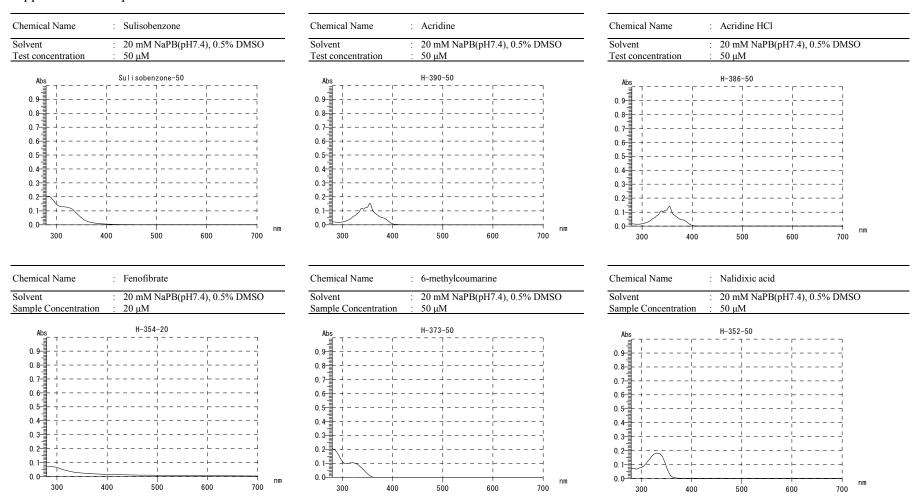
Photoreactive :Singlet oxygen results \geq 25 and Superoxide results \geq 70, Singlet oxygen results \leq 25 and/or interference such as precipitation or coloration, and Superoxide results \geq 70, Singlet oxygen results \geq 25 and Superoxide results \leq 70 and/or interference such as precipitation or coloration, at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

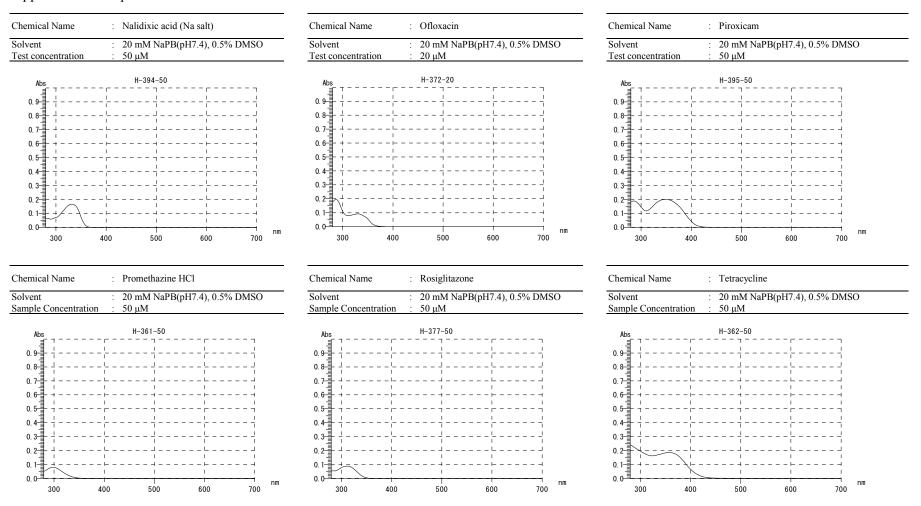
Weakly photoreactive : Singlet oxygen results \leq 25 and Superoxide results \geq 20, <70 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

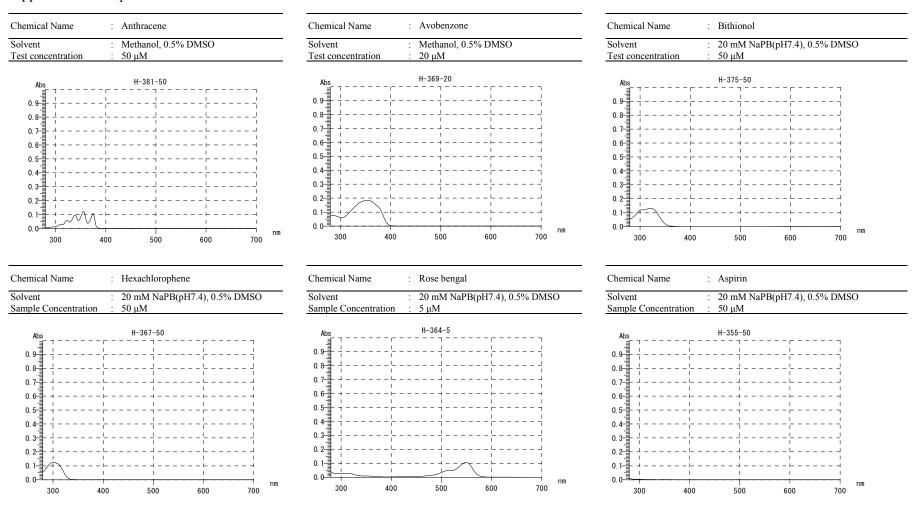

Non-photoreactive : Singlet oxygen results <25 and Superoxide results <20 at 200 μ M: 20 μ M without photodegradation is used for judgment only when precipitation or coloration is observed at 200 μ M

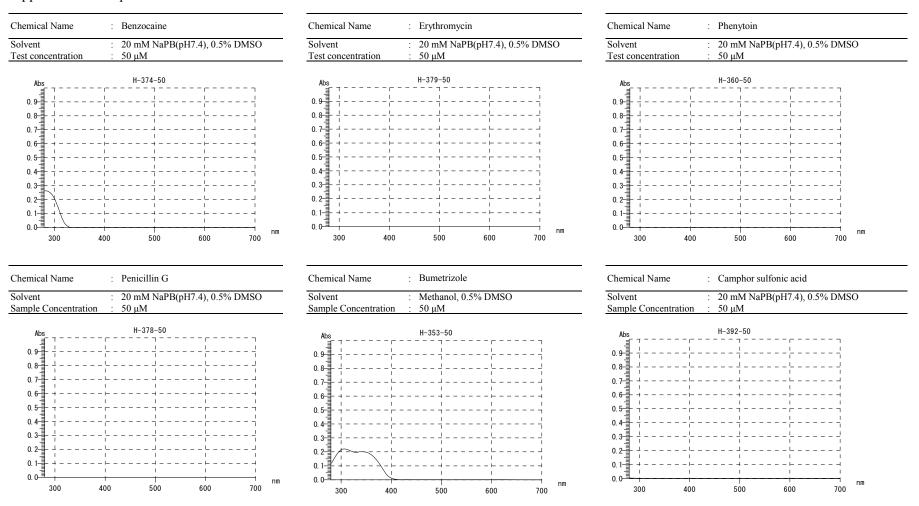
^{*3:} Final judgment based on the mean value of three assays

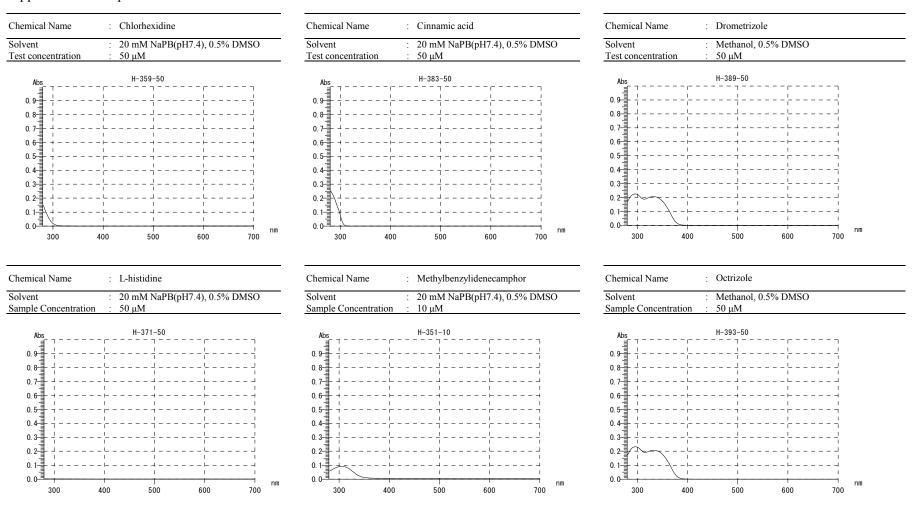
Test chemicals were dissolved in DMSO at 10 mM and diluted with 20 mM NaPB(pH7.4) or methanol. In the each case, final concentration of DMSO was unified to 0.5%. UV/vis absorption spectra were recorded with a HITACHI U-3500 spectrophotometer (HITACHI, Tokyo, Japan). Quartz cell with a 1 cm pathlength was emloyed.

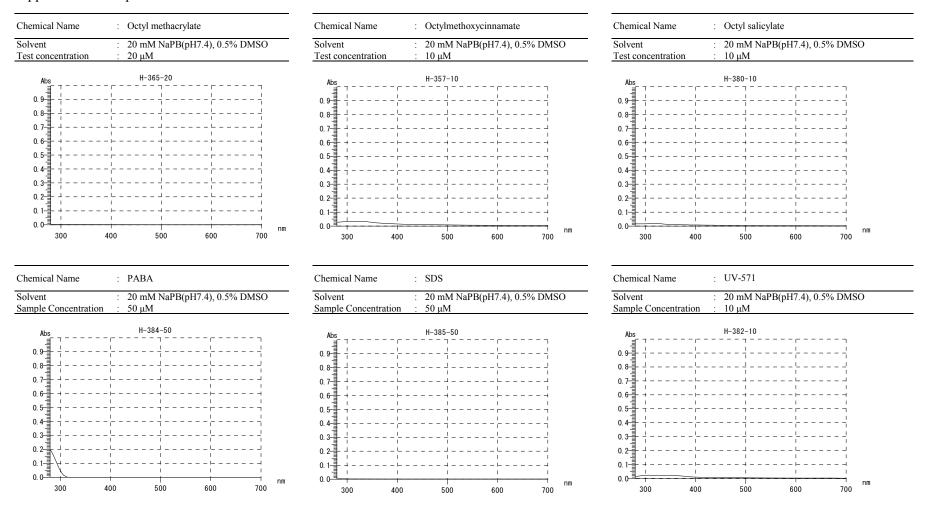

1)UV spectrum of 5-FU(normal line (nif)) was extracted from the article of M. L. Pascu, M. Brezeanu, L. Voicu, A. Staicu, B. Carstocea, R. A. Pascu (2005) in vivo, 19, 215-220 2)UV spectrum of Diclocenac (dashed line) was extracted from the article of J. Eriksson, J. Svanfelt, L. Kronberg (2010) *Photochemistry and Photobiology*, 86, 528-532




Test chemicals were dissolved in DMSO at 10 mM and diluted with 20 mM NaPB(pH7.4) or methanol. In the each case, final concentration of DMSO was unified to 0.5%. UV/vis absorption spectra were recorded with a HITACHI U-3500 spectrophotometer (HITACHI, Tokyo, Japan). Quartz cell with a 1 cm pathlength was emloyed.


1)Test chemical was dissolved in 20 mM NaPB(pH7.4). UV/vis absorption spectra was recorded with a HITACHI U-2010 spectrophotometer (HITACHI, Tokyo, Japan).


2)Omeprazole (curve 1) was extracted from the article of K. K. Rajic, D. Novovic, V. Mrinkovic, D. Agbaba (2003) Journal of Pharmaceutical and Biomedical Analysis, 32, 1019-1027



Appendix 9 Preparation information and appearance of the stock solutions and the reaction mixtures

				Lab	1							Lab	2							Lab	3			
Chemicals			solution				on mixtur			Stock	solution				on mixture			Stock s					on mixture	
N0. Name	1st	C	oncentrati	ion		Conce	entration a))	1st	C	oncentrati	on		Conc	entration a)		1st	C	oncentrati	on		Conce	entration a)	
	Solvent	10 mM	1 mM	0.1 mM		200 μΜ	20 μΜ	2 μΜ	Solvent	10 mM	1 mM	0.1 mM		200 μΜ	20 μΜ	2 μΜ	Solvent	10 mM	1 mM	0.1 mM		200 μΜ	20 μΜ	2 μΜ
II - 1 Acridine	DMSO	Sol.	-	-	SO	Sol.	-	-	DMSO	Sol.	-	-	SO	Sol.	-	-	DMSO	Sol.	-	-	SO	Sol.	-	-
					SA SO	Sol.	-	-					SA SO	Sol.	-	-					SA SO	Sol.	-	-
II - 2 Acridine HCl	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-
II - 3 Amiodarone HCl	DMSO	Sol.	Sol.	Sol.	SO	Sus.	Sus.	Sol.	DMSO	Sol.	Sol.	Sol.	SO	Sus.	Sus.	Sol.	DMSO	Sol.	Sol.	Sol.	SO	Sus.	Sus.	Sol.
					SA SO	Sus. Sol.	Sus.	Sol.					SA SO	Sus. Sol.	Sus.	Sol.					SA SO	Sus. Sol.	Sus.	Sol.
II - 4 Chlorpromazine HCl	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-
II - 5 Doxycycline HCl	DMSO	Sol.	_	-	SO	Sol.	-	-	DMSO	Sol.	-	-	SO	Sol.	-	-	DMSO	Sol.	_	-	SO	Sol.	-	-
					SA SO	Sol.	Sol.	-					SA SO	Sol. Sus.	- C	Sol.					SA SO	Sol.	Sol.	
II - 6 Fenofibrate	DMSO	Sol.	Sol.	-	SA	Sus. Sus.	Sol.	-	DMSO	Sol.	Sol.	Sol.	SA	Sus. Sus.	Sus. Sus.	Sol.	DMSO	Sol.	Sol.	-	SA	Sus. Sus.	Sol.	-
					SO	Sol.	501.						SO	Sol.	sus.	301.					SO	Sol.	501.	
II - 7 Furosemide	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-
					SO	Sol.							SO	Sol.	-						SO	Sol.		
II - 8 Ketoprofen	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-
					SO	Sol.							SO	Sol.							SO	Sol.		
II - 9 6-methylcoumarine	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-
					SO	Sol.							SO	Sol.	-						SO	Sol.		
II - 10 8-MOP	DMSO	Sol.	-	-	SA	Sol.	_	_	DMSO	Sol.	-	-	SA	Sol.	_	_	DMSO	Sol.	-	-	SA	Sol.	_	_
					SO	Sol.							SO	Sol.	_						SO	Sol.		
II - 11 Nalidixic acid	DMSO	Sol.	-	-	SA	Sol.	_	_	DMSO	Sol.	-	-	SA	Sol.	_	_	DMSO	Sol.	-	-	SA	Sol.	_	_
					SO	Sol.							SO	Sol.	-	_					SO	Sol.	_	
II - 12 Nalidixic acid (Na salt)	DMSO	Sol.	-	-	SA	Sol.	_	_	DMSO	Sol.	-	-	SA	Sol.	-	_	DMSO	Sol.	-	-	SA	Sol.	-	_
					SO	Sol.	-	-					SO	Sol.	-	_					SO	Sol.	-	
II - 13 Norfloxacin	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	_
					SO	Sol.	-	-					SO	Sol.	-	-					SO	Sol.	-	
II - 14 Ofloxacin	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-
					SO	Sol.	-	-					SO	Sol.	-	-					SO	Sol.	-	_
II - 15 Piroxicam	DMSO	Sol.	Sol.	-	SA	Sus.	Sol.	-	DMSO	Sol.	Sol.	-	SA	Sus.	Sol.	-	DMSO	Sol.	Sol.	-	SA	Sus.	Sol.	-
					SO	Sol.	-	-					SO	Sol.	-	-					SO	Sol.	-	_
II - 16 Promethazine HCl	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-
H 15 D 112	DMGO	6.1	6.1		SO	Sol.	-	-	DMGO	6.1	G 1		SO	Sol.	-	-	DMGO	6.1	6.1		SO	Sol.	-	-
II - 17 Rosiglitazone	DMSO	Sol.	Sol.	-	SA	Sus.	Sol.	-	DMSO	Sol.	Sol.	-	SA	Sus.	Sol.	-	DMSO	Sol.	Sol.	-	SA	Sus.	Sol.	-
П 10 Т : 1	DMGO	6.1			SO	Sol.	-	-	DMGO	6.1			SO	Sol.	-	-	DMGO	0.1			SO	Sol.	-	-
II - 18 Tetracycline	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-
H 10 4 d	DMGO	G 1	6.1	6.1	SO	Sus.	Sol.	-	DMGO	6.1	G 1	0.1	SO	Sus.	Sus.	Sol.	DMGO	6.1	G 1	0.1	SO	Sus.	Sus.	Sol.
II - 19 Anthracene	DMSO	Sol.	Sol.	Sol.	SA	Sus.	Sus.	Sol.	DMSO	Sol.	Sol.	Sol.	SA	Sus.	Sus.	Sol.	DMSO	Sol.	Sol.	Sol.	SA	Sus.	Sus.	Sol.
II. 20 A1	DMCO	G-1	Sol.	C-1	SO	Sus.	Sol.	-	DMCO	Sol.	G-1	C-1	SO	Sus.	Sus.	Sol.	DMCO	Sol.	C-1		SO	Sus.	Sol.	-
II - 20 Avobenzone	DMSO	Sol.	501.	Sol.	SA	Sus.	Sus.	Sol.	DMSO	501.	Sol.	Sol.	SA	Sus.	Sus.	Sol.	DMSO	501.	Sol.	-	SA	Sus.	Sol.	-
II. 21 Didianal	DMCO	C-1	G-1		SO	Sol.	-	-	DMCO	G-1	G-1	C-1	SO	Sol.	-	-	DMCO	C-1			SO	Sol.	-	-
II - 21 Bithionol	DMSO	Sol.	Sol.		SA	Sus.	Sol.	-	DMSO	Sol.	Sol.	Sol.	SA	Sus.	Sus.	Sol.	DMSO	Sol.			SA	Sol.		
II 22 II	DMCO	G-1			SO	Sol.	-	-	DMCC	6-1	G-1	G-1	SO	Sol.	-	-	DMCC	G-1			SO	Sol.	-	-
II - 22 Hexachlorophene	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	Sol.	Sol.	SA	Sus.	Sus.	Sol.	DMSO	Sol.	-	-	SA	Sol.	-	-
II. 22 D h1	DMCO	G-1			SO	Sol.	-	-	DMCC	6-1			SO	Sol.	-	-	DMCC	G-1			SO	Sol.	-	
II - 23 Rose bengal	DMSO	Sol.	-	-	SA	Sol.	_	_	DMSO	Sol.	-	-	SA	Sol.	_	_	DMSO	Sol.	-	-	SA	Sol.		_

Appearance; Sol.: Solution, Sus.: Suspension -: Not prepared SO: Singlet oxygen SA: Superoxide anion DMSO: Dimethyl sulfoxide NaPB: 2% DMSO / 20 mM sodium phosphate buffer a): For each test chemical, 20 μL of stock solution was added to the reaction mixtures whose final volume was 1000 μL. The stock solution whose concentration was 10 mM were used to prepare 200 μM reaction mixtures. The stock solutions whose concentrations were 1 and 0.1 mM were used to prepare 20 and 2 μ M.

Appendix 9 Preparation information and appearance of the stock solutions and the reaction mixtures (continued)

				Lab	1							Lab	2							Lab	3			
Chemicals		Stock:	solution			Reaction	on mixture)		Stock s	olution			Reacti	on mixture	,	•	Stock s	solution			Reacti	on mixture	•
N0. Name	1st	C	oncentrati	ion		Conce	entration a)		1st	C	oncentrat	ion		Conce	entration a)		1st	C	oncentrat	tion		Conce	entration a)	
No.	Solvent	10 mM	1 mM	0.1 mM		200 μΜ	20 μΜ	2 μΜ	Solvent	10 mM	1 mM	0.1 mM		200 μΜ	20 μΜ	2 μΜ	Solvent	10 mM	1 mM	0.1 mM		200 μΜ	20 μΜ	2 μΜ
II - 24 Aspirin	DMSO	Sol.			SO	Sol.	-	-	DMSO	Sol.			SO	Sol.	-	-	DMSO	Sol.			SO	Sol.	-	-
II - 24 Aspitiii	DIVISO	301.		-	SA	Sol.	-	-	DMSO	501.			SA	Sol.	-	-	DMSO	301.		-	SA	Sol.	-	-
II - 25 Benzocaine	DMSO	Sol.	_	_	SO	Sol.	-	-	DMSO	Sol.	_	_	SO	Sol.	-	-	DMSO	Sol.	_	_	SO	Sol.	-	-
II 25 Benzoeume	Dinibo	501.			SA	Sol.	-	-	5.1100	501.			SA	Sol.	-	-	D.1100	501.			SA	Sol.	-	
II - 26 Erythromycin	DMSO	Sol.	_	_	SO	Sol.	-	-	DMSO	Sol.	_	_	SO	Sol.	-	-	DMSO	Sol.	_	_	SO	Sol.	-	-
					SA	Sol.	-	-					SA	Sol.	-	-					SA	Sol.	-	
II – 27 Penicillin G	DMSO	Sol.	_	-	SO	Sol.	-	-	DMSO	Sol.	-	-	SO	Sol.	-	-	DMSO	Sol.	-	-	SO	Sol.	-	-
					SA	Sol.	-	-					SA	Sol.	-	-					SA	Sol.	-	
II - 28 Phenytoin	DMSO	Sol.	-	-	SO	Sol.	-	-	DMSO	Sol.	-	-	SO	Sol.	-	-	DMSO	Sol.	-	-	SO	Sol.	-	-
·					SA	Sol.		-					SA	Sol.	-	- 0.1					SA	Sol.	- 0.1	
II - 29 Bumetrizole	DMSO	Sol.	Sol.	Sol.	SO	Sus. Sus.	Sol. Sus.	Sol.	DMSO	Sol.	Sol.	Sol.	SO SA	Sus. Sus.	Sus. Sus.	Sol.	DMSO	Sol.	Sol.	-	SO SA	Sus. Sus.	Sol. Sol.	-
					SA SO	Sol.	Sus.	501.					SO	Sol.	sus.	Sol.					SO	Sol.	- 501.	<u> </u>
II - 30 Camphor sulfonic acid	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-	DMSO	Sol.	-	-	SA	Sol.	-	-
					SO	Sol.							SO	Sol.							SO	Sol.		<u> </u>
II - 31 Chlorhexidine	DMSO	Sol.	-	-	SA	Sol.	_	_	DMSO	Sol.	-	-	SA	Sol.	_	_	DMSO	Sol.	-	-	SA	Sol.	_	_
-					SO	Sol.	_	_					SO	Sol.	_						SO	Sol.		
II - 32 Cinnamic acid	DMSO	Sol.	-	-	SA	Sol.	_	_	DMSO	Sol.	-	-	SA	Sol.	_	_	DMSO	Sol.	-	-	SA	Sol.	_	_
					SO	Sus.	Sol.	_					SO	Sus.	Sol.	-					SO	Sus.	Sus.	Sol.
II - 33 Drometrizole	DMSO	Sol.	Sol.	-	SA	Sus.	Sol.	-	DMSO	Sol.	Sol.	-	SA	Sus.	Sol.	-	DMSO	Sol.	Sol.	Sol.	SA	Sus.	Sol.	-
	D1/00	-			SO	-	-	-	D1/00	-			SO	-	-	-	D1 100	-			SO	-	-	
	DMSO	Sus.	-	-	SA	-	-	-	DMSO	Sus.	-	-	SA	-	-	-	DMSO	Sus.	-	-	SA	-	-	-
II - 34 L-Histidine	N. DD	G 1			SO	Sol.	-	-	N. DD	0.1			SO	Sol.	-	-	N. DD	6.1			SO	Sol.	-	
	NaPB	Sol.	-	-	SA	Sol.	-	-	NaPB	Sol.	-	-	SA	Sol.	-	-	NaPB	Sol.	-	-	SA	Sol.	-	-
H 25 M-4h-4h	DMCO	G-1	C-1		SO	Sus.	Sol.	-	DMCO	0-1	G - 1		SO	Sus.	Sol.	-	DMCO	C-1	G-1		SO	Sus.	Sol.	-
II - 35 Methylbenzylidene camphor	DMSO	Sol.	Sol.	-	SA	Sus.	Sol.	-	DMSO	Sol.	Sol.	-	SA	Sus.	Sol.	-	DMSO	Sol.	Sol.	-	SA	Sus.	Sol.	-
II - 36 Octrizole	DMSO	Sol.	Sol.	Sol.	SO	Sus.	Sus.	Sol.	DMSO	Sol.	Sol.	Sol.	SO	Sus.	Sus.	Sol.	DMSO	Sol.	Sol.		SO	Sus.	Sol.	-
II - 30 Octilzole	DIVISO	301.	301.	301.	SA	Sus.	Sus.	Sol.	DIVISO	301.	301.	301.	SA	Sus.	Sus.	Sol.	DMSO	301.	301.		SA	Sus.	Sol.	-
II - 37 Octyl methacrylate	DMSO	Sol.	_	_	SO	Sol.	-	-		Sol.	Sol.	_	SO	Sus.	Sol.	-	DMSO	Sol.	Sol.	_	SO	Sus.	Sol.	-
11 37 Getyl methaelylate	Diviso	501.			SA	Sol.	-	-	DMSO	501.	501.		SA	Sus.	Sol.	-	DIVISO	501.	501.		SA	Sus.	Sol.	-
II - 38 Octyl methoxycinnamate	DMSO	Sol.	Sol.	_	SO	Sus.	Sol.	-		Sol.	Sol.	Sol.	SO	Sus.	Sus.	Sol.	DMSO	Sol.	Sol.	_	SO	Sus.	Sol.	-
11 30 Setyl methoxyemmanate	Dinibo	501.	501.		SA	Sus.	Sol.	-	DMSO	501.	501.	501.	SA	Sus.	Sus.	Sol.	D.1100	501.	501.		SA	Sus.	Sol.	
II - 39 Octyl salicylate	DMSO	Sol.	Sol.	_	SO	Sus.	Sol.	-	DMSO	Sol.	Sol.	_	SO	Sus.	Sol.	-	DMSO	Sol.	Sol.	_	SO	Sus.	Sol.	-
					SA	Sus.	Sol.	-					SA	Sus.	Sol.	-					SA	Sus.	Sol.	
II - 40 PABA	DMSO	Sol.	-	-	SO	Sol.	-	-	DMSO	Sol.	-	-	SO	Sol.	-	-	DMSO	Sol.	-	-	SO	Sol.	-	-
					SA	Sol.	-	-					SA	Sol.	-	-					SA	Sol.	-	
II - 41 SDS	DMSO	Sol.	Sol.	-	SO	Sol.	-	-	DMSO	Sol.	Sol.	Sol.	SO	Sol.	-	-	DMSO	Sol.	-	-	SO	Sol.	-	-
					SA	Sus.	Sol.	-					SA	Sus.	Sus.	Sol.					SA	Sol.	-	-
II - 42 UV-571	DMSO	Sol.	Sol.	Sol.	SO	Sus.	Sol.	- C-1	DMSO	Sol.	Sol.	Sol.	SO	Sus.	Sus.	Sol.	DMSO	Sol.	Sol.	Sol.	SO	Sus.	Sus.	Sol.
Appearance; Sol. : Solution, Sus. : Su	<u></u>	- : Not p	1		SA	Sus.	Sus.	Sol.					SA	Sus.	Sus.	Sol.					SA	Sus.	Sus.	Sol.

Appearance; Sol. : Solution, Sus. : Suspension - : Not prepared SO : Singlet oxygen SA : Superoxide anion DMSO : Dimethyl sulfoxide NaPB : 2% DMSO / 20 mM sodium phosphate buffer

a): For each test chemical, 20 µL of stock solution was added to the reaction mixtures whose final volume was 1000 µL. The stock solution whose concentration was 10 mM were used to prepare 200 µM reaction mixtures.

The stock solutions whose concentrations were 1 and 0.1 mM were used to prepare 20 and 2 μ M.

Attachment 1 Protocol for phase 1 study

International Validation Study on ROS Assay as a Test Evaluating Phototoxic Potential of Chemicals Version 1.0

INTERNATIONAL VALIDATION STUDY ON ROS (REACTIVE OXIDATIVE SPECIES) ASSAY AS A TEST EVALUATING PHOTOTOXIC POTENTIAL OF CHEMICALS (VERSION 1.0)

Issued by: the Validation Management Team (VMT)

Date: 22 April 2011.

1. Purpose of this document

This document is provided to clarify the conduct of an international validation study to evaluate the ability of ROS (reactive oxidative species) assay as a photochemical property study to examine necessity of phototoxicity tests. This document represents the first study protocol developed as a result of the collaboration efforts of the participating testing facilities and the VMT. Each testing facility will develop a study protocol based on the information provided in this document.

2. Background of ROS assay

Drug-induced photoirritation can be defined as an inflammatory reaction of the skin after topical or systemic administration of pharmaceutical substances. classes of drugs including antibacterials, thiazide diuretics, non-steroidal anti-inflammatory drugs, quinolones, and tricyclic antidepressants, even though nontoxic by themselves, may become reactive under exposure to environmental light, leading to undesired side effects. The primary event in any photosensitization process is the absorption of photons of the appropriate wavelength, which allows chromophore to reach an excited state. The excitation energy is often transferred to oxygen molecules, followed by generation of ROS: superoxide through type I reaction and singlet oxygen through type II reaction by photo-excited drug molecules. These appear to be the principal intermediate species in the phototoxic response. From the standpoint of risk assessment, previous study demonstrated that determination of ROS from pharmaceutical substances irradiated with UVA/B and Vis would be of help in recognizing their phototoxic potential.

In the ROS assay, generation of singlet oxygen was detected by spectrophotometric measurement of *p*-nitrosodimethyl aniline (RNO) bleaching, followed by decreased absorbance of RNO at 440 nm. Although singlet oxygen does not react chemically

with RNO, the RNO bleaching is a consequence of singlet oxygen capture by the imidazole ring, resulting in the formation of a trans-annular peroxide intermediate capable of inducing the bleaching of RNO as follows;

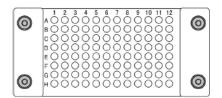
Singlet oxygen + Imidazole \rightarrow [Peroxide intermediate] \rightarrow Oxidized imidazole [Peroxide intermediate] + RNO \rightarrow RNO + Products

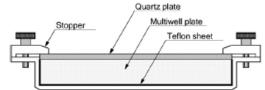
The generation of superoxide could be determined by the reduction of nitroblue tetrazolium (NBT) as indicated below; NBT can be reduced by superoxide anion via a one-electron transfer reaction, yielding partially reduced (2 e⁻) monoformazan (NBT⁺) as a stable intermediate. Thus, superoxide can reduce NBT to NBT⁺, whose formation can be monitored spectrophotometrically at 560 nm.

Superoxide + NBT
$$\rightarrow$$
 O₂ + NBT⁺

3. Materials

3.1. Control compounds


Name	CAS No.	Manufucture	Molecular weight
Quinine			
monohydrochrolide	6119-47-7	Sigma	206.01
dihydrate	0119-4/-/	(Catalog No. 145920)	396.91
(Positive control)			
Sulisobenzone	1065 15 6	Tokyo Chemical Industry	200.21
(Negative control)	4065-45-6	(Catalog No. H0466)	308.31


3.2. Solvent

Dimethylsulfoxide (DMSO): analytical grade

3.3. Instruments

Instrument	Model
	Suntest CPS+, quipped UV (<290 nm) cut filter
Solar simulator	(Atlas Material Technology), or its equivalent
Solal Sillulator	Suntest CPS, quipped UV (<290 nm) cut filter
	(Atlas Material Technology), or its equivalent
UVA detector	Topcon or Dr. Hönle
Microplate spectrophotometer,	Spectra Max M2 (Molecular Devices), Tecan
equipped 440 and 560 nm filters	Safire (Tecan), or their equivalents
Overtz reaction container	Made-to-order (Ozawa Sciences, Onoue et al.
Quartz reaction container	2008, see below Figure)

4. Preparations

4.1. Reagents

All reagents should be sonicated and used within 1 month after preparation.

4.1.1. 20 mM Sodium phosphate buffer (NaPB), pH 7.4

Transfer 593 mg of $NaH_2PO_4 \cdot 2H_2O$ and 5.8 g of $Na_2HPO_4 \cdot 12H_2O$ to a 1L flask, add 900 mL of purified water, adjust with HCl to a pH of 7.4, dilute with purified water to volume, and mix.

Stored at refrigerator or room temperature.

4.1.2. p-Nitrosodimethylaniline (RNO)

Dissolve 3 mg of RNO in 100 mL of 20 mM NaPB at the concentration of 2 x 10^{-4} M

Stored at refrigerator and keep to protect from light

4.1.3. Imidazole

Dissolve 13.6 mg of Imidazole in 10 mL of 20 mM NaPB at the concentration of 2 x 10^{-2} M

Dilute the 2 x 10⁻² M Imidazole solution 100 times with 20 mM NaPB.

Stored at refrigerator and keep to protect from light

4.1.4. Nitroblue tetrazolium chloride (NBT)

Dissolve 32.7 mg of NBT in 100 mL of 20 mM NaPB at the concentration of 4 x 10^{-4} M.

Stored at refrigerator and keep to protect from light

4.2. Test compounds

Name	Concentration of preparation	Final concentration
Test compounds	1 and 10 mM ¹⁾	20 and 200 μM
Quinine (positive control)	10 mM	200 μΜ
Sulisobenzone	10 mM ²⁾	200 μΜ
(negative control)		
DMSO (blank)		

Notes

- 1) Compound will be weighed in a tube, and added DMSO at the concentration 10 mM as a stock solution. The tube will be mixed with vortex mixer and sonicated for 5 to 10 min under UV-cut illumination or shade. The solutions will be divided to 3 or more new tubes at volume of >50 μL each, kept to protect from light, and stored at freezer (below -20°C). Just before use, the stock solution will be thawed and diluted in DMSO at 1 mM. All preparations should be checked solubility (solution or suspension) with the naked eye.
- 2) Sulisobenzone solution will be prepared at 3.825 mg/mL (net weight) in DMSO because of dried material of 19.4% (lot Z6IBE).

5. Methods

A tube (e.g. 1.5 mL of eppendorf tube) and a plastic clear flat bottomed 96-well microplate will be used. The reaction mixture should be prepared under UV-cut illumination or shade.

Experiments will be performed in triplicate wells in 3 independent runs.

[Singlet oxygen]		[Superoxide	anion]
20 mM NaPB	480 μL	20 mM NaPB	855 μL
Imidazole	250 μL	NBT	125 μL
RNO	250 μL	Compound	20 μL
Compound	20 μL		
\downarrow		\downarrow	
Mix (Vortex and Sor	fication for $5 - 10 \text{ min}$	Mix (Vortex and so	nication for 5-10 min)
\downarrow		\downarrow	
Check solubility ¹⁾		Check solubility ¹⁾	
\downarrow		\downarrow	
Add 200 μL of mixtu	are to each well (n=3)	Add 200 µL of mixtu	are to each well (n=3)
\downarrow		\downarrow	
Pre-read Abs at 440	nm after shaking for 5 sec	Pre-read Abs at 560	nm after shaking for 5 sec
\downarrow		\downarrow	
Light exposure (250	W/m^2 for 1 hr at 25°C) ²⁾	Light exposure (250	W/m^2 for 1 hr at $25^{\circ}C)^{2)}$
\downarrow		\downarrow	
Read Abs at 440 nm	after shaking for 5 sec	Read Abs 560 nm a	after shaking for 5 sec
\downarrow		\downarrow	
Check solubility ¹⁾		Check solubility ¹⁾	

Notes

- 1) The reaction mixture will be checked solubility (solution or suspension) with naked eye before or after light exposure.
- 2) The 96-well plate will be placed in to the Quartz reaction container. The container will be set quarts cover and fasten with bolts. The solar simulator will be use at least 30 min after turning on the power supply at the indicator setting value of 250 W/m² (for CPS+). After the final experiment of the day, UVA intensity will be measured using a UVA detector. Temperature and light exposure will be written the set values by light exposure equipment (for CPS+). An example of 96-well plate configuration is shown as follows;

	1	2	3	4	5	6	7	8	9	10	11	12
A	\times											
В	\times	В	P	N	SP1	SP2	SP3	SP4	SP5	SP6	SP7	\times
С	\times	В	P	N	SP1	SP2	SP3	SP4	SP5	SP6	SP7	\times
D	\times	В	P	N	SP1	SP2	SP3	SP4	SP5	SP6	SP7	\times
Е	\times	В	P	N	SP1	SP2	SP3	SP4	SP5	SP6	SP7	\times
F	X	В	P	N	SP1	SP2	SP3	SP4	SP5	SP6	SP7	X
G	\times	В	P	N	SP1	SP2	SP3	SP4	SP5	SP6	SP7	\times
Н	X	\times	X	X	\times	X	\times	X	\times	X	\times	\times

B:Blank (DMSO)

P: Positive control (Quinine), 200 μM

N: Negative control (Sulisobenzone), 200 μM

SP1-SP7: test compound No. 1-7, 200 μM or 20 μM

6. Data analysis

Individual data will be presented in a fixed tabular form (excel file) provided form the VMT.

6.1. Singlet oxygen

decrease of A440 $\times 10^3 = (A440(-) - A440(+) - (A-B)) \times 1000$

A440(-) : Absorbance before light exposure at 440 nm

A440(+) : Absorbance after light exposure at 440 nm

A : Mean (Blank before light exposure)B : Mean (Blank before after exposure)

6.2. Superoxide anion

increase of A560 $\times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm

A : Mean (Blank before light exposure)B : Mean (Blank before after exposure)

7. Criteria for data acceptance

The following criteria should be satisfied in each experiment at the present. The final criteria will be decided after validation study.

7-1. Data

Without data lack in positive control, negative control, blank, and test compound.

7-2. OD values

Each net OD value of positive control, negative control, and test compound: 0.02 to 1.1

7-3. Calculation values

Positive control value at 200 µM (mean of 3 wells)

Singlet oxygen: 150 to 500 Superoxide anion: 200 to 400

Negative control value at 200 µM (mean of 3 wells)

Singlet oxygen: -20 to 24 Superoxide anion: -20 to 19

8. Criteria for judgment

The test compound will be judged as a positive response when mean value of 3 wells at 20 and/or 200 μM is over 25 for singlet oxygen and over 20 for superoxide anion. The final criteria will be decided after validation study.

9. Archives and review

The study report and all raw data from this study will be retained according to the SOP in each testing facility. All raw data will be submitted to the VMT for review if required.

10. Reference

S. Onoue, N. Igarashi, S. Yamada, Y. Tsuda, Journal of Pharmaceutical and Biomedical Analysis, 46 (2008) 187-193.

Attachment 2 Protocol for phase 2 study

International Validation Study on ROS Assay as a Test Evaluating Phototoxic Potential of Chemicals Atlas Version 3.02

INTERNATIONAL VALIDATION STUDY ON ROS (REACTIVE OXIDATIVE SPECIES) ASSAY AS A TEST EVALUATING PHOTOTOXIC POTENTIAL OF CHEMICALS (ATLAS VERSION 3.02)

Issued by: the Validation Management Team (VMT)

Date: 21 May 2012.

1. Purpose of this document

This document is provided to clarify the conduct of an international validation study to evaluate the ability of ROS (reactive oxidative species) assay as a photochemical property study to examine necessity of phototoxicity tests. This document represents the last study protocol developed as a result of the collaboration efforts of the participating testing facilities and the VMT. Each testing facility will develop a study protocol based on the information provided in this document.

2. Background of ROS assay

Drug-induced photoirritation can be defined as an inflammatory reaction of the skin after topical or systemic administration of pharmaceutical substances. classes of drugs including antibacterials, thiazide diuretics, non-steroidal anti-inflammatory drugs, quinolones, and tricyclic antidepressants, even though nontoxic by themselves, may become reactive under exposure to environmental light, leading to undesired side effects. The primary event in any photosensitization process is the absorption of photons of the appropriate wavelength, which allows chromophore to reach an excited state. The excitation energy is often transferred to oxygen molecules, followed by generation of ROS: superoxide through type I reaction and singlet oxygen through type II reaction by photo-excited drug molecules. These appear to be the principal intermediate species in the phototoxic response. From the standpoint of risk assessment, previous study demonstrated that determination of ROS from pharmaceutical substances irradiated with UVA/B and visible light would be of help in recognizing their phototoxic potential.

In the ROS assay, generation of singlet oxygen was detected by spectrophotometric measurement of *p*-nitrosodimethyl aniline (RNO) bleaching, followed by decreased absorbance of RNO at 440 nm. Although singlet oxygen does not react chemically

with RNO, the RNO bleaching is a consequence of singlet oxygen capture by the imidazole ring, resulting in the formation of a trans-annular peroxide intermediate capable of inducing the bleaching of RNO as follows;

Singlet oxygen + Imidazole → [Peroxide intermediate] → Oxidized imidazole [Peroxide intermediate] + RNO → RNO + Products

The generation of superoxide could be determined by the reduction of nitroblue tetrazolium (NBT) as indicated below; NBT can be reduced by superoxide anion via a one-electron transfer reaction, yielding partially reduced (2 e⁻) monoformazan (NBT⁺) as a stable intermediate. Thus, superoxide can reduce NBT to NBT⁺, whose formation can be monitored spectrophotometrically at 560 nm.

Superoxide + NBT
$$\rightarrow$$
 O₂ + NBT⁺

3. Materials

3.1. Test chemicals

Coded test chemicals and essential information about the test substances (physical state, weight or volume of the test chemicals, specific density for liquids, storage instructions, molecular weight, and conversion factor) will be supplied to each testing facility by the VMT. Safety information of the test chemicals will be provided to an appropriate individual within the organization who is not involved in the study. The test chemicals should be stored according to the VMT instructions until termination of the study. Study personnel can confirm the safety information in the case of emergency. If the safety information is opened, appropriate documentation and justification will need to be provided to the VMT.

3.2. Control chemicals

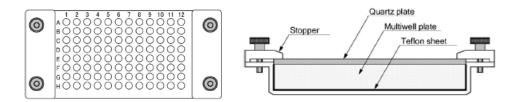
Positive and negative control chemicals will be supplied to each testing facility by the VMT. Both chemicals will be stored in an air-tight container in a refrigerator and protected from light.

Name	CAS No.	Molecular weight
Quinine monohydrochrolide dihydrate (Quinine, positive control)	6119-47-7	396.91
Sulisobenzone (Negative control)	4065-45-6	308.31

3.3. Solvent

Dimethylsulfoxide (DMSO, analytical grade) should be used at first. DMSO should be stored at room temperature. In the case of DMSO-insoluble chemical,

20 mM sodium phosphate buffer (NaPB, see Section 4.1.1.) should be used as a solvent. If a test chemical is insoluble in either DMSO or 20 mM NaPB, it is impossible for the chemical to evaluate in this assay.


3.4. Reagents

The following reagents will be used and stored according to the instructions of manufacturers.

- NaH₂PO₄ 2H₂O: e.g. Wako, catalog No. 192-02815
- Na₂HPO₄ 12H₂O: e.g. Wako, catalog No. 194-02831
- p-Nitrosodimethylaniline (RNO): e.g. APOLLO, catalog No. OR30877
- Imidazole: e.g. Wako, catalog No. 099-00013
- Nitroblue tetrazolium chloride (NBT): e.g. Wako, catalog No. 144-01993
- Purified water

3.5. Technical equipments

- Solar simulator: Suntest CPS+ or CPS, equipped with a xenon arc lamp, UV (<290 nm) cut filter, and temperature control unit (Atlas Material Technology), or their equivalents
- UVA detector (as a calibrator, Dr. Hönle #0037)
- UVA detector for regular use: e.g. Topcon or Dr. Hönle
- Thermometer
- Microplate spectrophotometer, equipped 440 and 560 nm filters: Spectra Max M2 (Molecular Devices), Tecan Safire (Tecan), or equivalents
- Quartz reaction container: Made-to-order (Ozawa Sciences, Onoue et al. 2008, see below Figure), supplied from the VMT.
- Microscope
- Voltex mixer
- Plate shaker
- Sonicator
- Pipetting aid
- Pipettes, 8-channel-pipettes
- Polypropylene tubes
- Plastic 96-well plates (clear, non-treat flat-bottom)
- Plastic- and glassware

4. Preparations

4.1. Reagents

All reagents should be sonicated and used within 1 month after preparation. Representative preparation methods are shown as follows;

4.1.1. 20 mM sodium phosphate buffer (NaPB), pH 7.4

Weigh 593 mg of NaH₂PO₄ • 2H₂O and 5.8 g of Na₂HPO₄ • 12H₂O, add 900 mL of purified water, adjust with HCl to a pH of 7.4, dilute with purified water up to 1 L, and mix.

Stored at refrigerator or room temperature.

4.1.2. p-Nitrosodimethylaniline (RNO)

Dissolve 3 mg of RNO in 100 mL of 20 mM NaPB at the concentration of 2 x 10^{-4} M.

Stored at refrigerator and keep to protect from light.

4.1.3. Imidazole

Dissolve 13.6 mg of imidazole in 10 mL of 20 mM NaPB at the concentration of 2 x 10^{-2} M.

Dilute the 2 x 10⁻² M imidazole solution 100 times with 20 mM NaPB.

Stored at refrigerator and keep to protect from light.

4.1.4. Nitroblue tetrazolium chloride (NBT)

Dissolve 32.7 mg of NBT in 100 mL of 20 mM NaPB at the concentration of 4 x 10^{-4} M

Stored at refrigerator and keep to protect from light.

4.2. Test chemicals

The test chemicals will be prepared using DMSO just before use.

Each test chemical will be weighed in a tube, and added DMSO at the concentration 10 mM at first. The tube will be mixed with vortex mixer and sonicated for 5 to 10 min under UV-cut illumination or shade. All preparations should be kept to protect from light. The final concentration in a reaction mixture (see section 5.2.) will be set at $200 \text{ }\mu\text{M}$. When precipitation is observed at $20 \text{ }\mu\text{M}$ in the reaction mixture

under a microscope, 1 mM of the test chemical solution should be prepared using DMSO. Furthermore, 0.1 mM of the test chemical solution should be prepared using DMSO when precipitation is observed at 2 μ M in the reaction mixture.

In the case of DMSO-insoluble chemical, the final concentration in the reaction mixture including 20 μ L of DMSO (see Section 5.2.) will be used at the maximum concentration without precipitation (2, 20, or 200 μ M).

4.3. Positive and negative control chemicals

Stock solutions of qunine and sulisobenzone will be prepared at 10 mM each in DMSO (the final concentration of 200 μ M) according to the procedure of section 4.2., divided into some tubes, and stored in a freezer (generally below -20°C) for up to 1 month. The stock solution will be thawed just before the experiment and used within the day.

5. Methods

5.1. Calibration of the UVA irradiance

The UVA irradiance should be calibrated as described below prior to the study.

UVA intensity will be set at an appropriate value (e.g. the indicator setting value of 250 W/m² for CPS+). The solar simulator and the temperature control unit (or its equivalent) will be turned on the power supply. UVA intensity on the plate position will be measured under a stable condition using a UVA detector of the testing facility and the calibrated UVA detector (Dr. Hönle #0037) delivered by the VMT. The measurement will be performed at some different intensity using the two UVA detectors. Correlation curve on the values of the UVA detectors will be confirmed.

5.2. Calibration of the solar simulator

On the day of assays, 1.8-2.2 mW/cm² of UVA intensity for the calibrated UVA detector will be set.

When the solar simulator has a temperature control unit, the temperature will be adjusted at 25°C. As for the solar simulator without a temperature control unit, a range of 20-29°C after light exposure is acceptable.

5.3. Test procedure

A tube (e.g. 1.5 mL of eppendorf tube) and a plastic clear flat bottomed 96-well microplate will be used. The reaction mixture should be prepared under UV-cut

illumination or shade. DMSO will be used in a blank.

Experiments will be performed in triplicate wells in three independent runs.

As the final concentrations, $200 \, \mu M$ of test chemical solutions will be used generally. When precipitation is observed at $200 \, \mu M$, additional experiments should be performed at $20 \, \mu M$. Further experiments should be performed at $2 \, \mu M$ when precipitation is observed at $20 \, \mu M$. When precipitation is observed at $2 \, \mu M$ in the reaction mixture, further experiment is not needed. When questionable data (e.g. technical error) is obtained, each testing facility can perform an additional experiment using the questionable chemical(s) and the positive/negative chemicals. If the values of the positive/negative chemicals would not be met the criteria (see section 7), the additional experiment using the all chemicals of the plate should be needed. The reason of the additional experiment should be described in the raw data. The adoption of the triplicate data will be decided by the VMT.

[Singlet oxygen]		[Superoxide anion]	
20 mM NaPB	480 μL	20 mM NaPB	855 μL
Imidazole	250 μL	NBT	125 μL
RNO	$250~\mu\mathrm{L}$	Chemical	20 μL
Chemical	$20~\mu L$		
\downarrow		\downarrow	
Mix (Vortex and Son	nication for 5 – 10 min)	Mix (Vortex and son	ication for 5-10 min)
\downarrow		\downarrow	
Add 200 µL of mixt	ure to each well (n=3) 1)	Add 200 μL of mixtu	are to each well (n=3) 1)
\downarrow		\downarrow	
Check solubility 2)		Check solubility 2)	
\downarrow		\downarrow	
Pre-read Abs at 440	nm after shaking for 5 sec	Pre-read Abs at 560	nm after shaking for 5 sec
\downarrow		\downarrow	
Light exposure for 1	hr ³⁾	Light exposure for 1	hr ³⁾
\downarrow		\downarrow	
Read Abs at 440 nm	after shaking for 1 min	Read Abs 560 nm aft	ter shaking for 1 min

Notes

1) An example of 96-well plate configuration is shown as follows;

	1	2	3	4	5	6	7	8	9	10	11	12
A	\times											
В	\times	В	P	N	SP1	SP2	SP3	SP4	SP5	SP6	SP7	\times
С	\times	В	P	N	SP1	SP2	SP3	SP4	SP5	SP6	SP7	\times
D	\times	В	P	N	SP1	SP2	SP3	SP4	SP5	SP6	SP7	\times
Е	\times	В	P	N	SP1	SP2	SP3	SP4	SP5	SP6	SP7	\times
F	X	В	P	N	SP1	SP2	SP3	SP4	SP5	SP6	SP7	\times
G	\times	В	P	N	SP1	SP2	SP3	SP4	SP5	SP6	SP7	\times
Н	X	\times	X	X	\times	X	\times	\times	\times	\times	\times	\times

B: Blank (DMSO)

P: Positive control (Quinine), 200 μM

N: Negative control (Sulisobenzone), 200 μM

SP1-SP7: test chemical No. 1-7

B2-B11, C2-C11, and D2-D11 wells: singlet oxygen

E2-E11, F2-F11, and G2-G11 wells: superoxide anion

- 2) The reaction mixture will be checked solubility (solution or suspension) using a microscope (×100) before light exposure.
- 3) The 96-well plate will be placed in to the Quartz reaction container. The container will be set quarts cover and fasten with bolts. The solar simulator and the temperature control unit (or its equivalent) will be use under a stable condition. After the experiment, UVA intensity and temperature on the plate position will be measured using the UVA detector of the testing facility and thermometer. Acceptable ranges of temperature and UVA intensity after light exposure are shown in section 5.1.

6. Data analysis

Individual data will be presented in a fixed tabular form (excel file) provided by the VMT. The data of 3 wells in each chemical will be calculated as mean and standard division in each experiment.

6.1. Singlet oxygen

decrease of A440 $\times 10^3$ = (A440(-) - A440(+) - (A-B)) $\times 1000$

A440(-) : Absorbance before light exposure at 440 nm A440(+) : Absorbance after light exposure at 440 nm

A : Mean (Blank before light exposure)B : Mean (Blank before after exposure)

6.2. Superoxide anion

increase of $A560 \times 10^3 = (A560(+) - A560(-) - (B-A)) \times 1000$

A560(-) : Absorbance before light exposure at 560 nm A560(+) : Absorbance after light exposure at 560 nm

A : Mean (Blank before light exposure)B : Mean (Blank before after exposure)

7. Criteria for data acceptance

The following criteria should be satisfied in each experiment at the present. The criteria will be decided after validation study.

7.1. Precipitation

Without precipitation of test chemical in the reaction mixture before light exposure.

7.2. Data

Without data lack in positive control, negative control, blank, and test chemical.

7.3. OD values

Each net OD value of positive control, negative control, and test chemical: 0.02 to 1.5.

7.4. Calculation values

Positive control value at 200 µM (mean of 3 wells)

Singlet oxygen: 150 or more Superoxide anion: 200 or more

Negative control value at 200 µM (mean of 3 wells)

Singlet oxygen: less than 25 Superoxide anion: less than 20

8. Criteria for judgment

The final criteria including obligatory endpoint(s) for ROS assay, singlet oxygen and/or superoxide, will be decided after validation study. At present, each test chemical will be judged in each experiment as follows;

Positive (mean of 3 wells)

Singlet oxygen: 25 or more at 200, 100, 50 or 20 μ M, or Superoxide anion: 20 or more at 200, 100, 50 or 20 μ M

Negative (mean of 3 wells)

Singlet oxygen: less than 25 at 200 μM and

Superoxide anion: less than 20 at 200 μM

Inconclusive (mean of 3 wells)

The results does not meet the positive or negative criterion.

The final judgment will be estimated on the results of triplicate experiments in each testing facility as follows;

Positive (mean of 3 assays)

Singlet oxygen: 25 or more at 200, 100, 50 or 20 μ M, or Superoxide anion: 20 or more at 200, 100, 50 or 20 μ M

Negative (mean of 3 assays)

Singlet oxygen: less than 25 at 200 μM and Superoxide anion: less than 20 at 200 μM and

Inconclusive (mean of 3 wells)

The results does not meet the positive or negative criterion.

9. Archives and review

The study report and all raw data from this study will be retained according to the SOP in each testing facility. All raw data (pdf files) and the results (excel files) will be submitted to the VMT for review.

10. Reference

S. Onoue, N. Igarashi, S. Yamada, Y. Tsuda, Journal of Pharmaceutical and Biomedical Analysis, 46 (2008) 187-193.

Appendix 1: Amendment of Protocol

1. Version 3.01

Date: 29 August 2011

Items: 8. Criteria for Judgment (Page 8)

Positive (mean of 3 wells)

Version 3.0 Version 3.01

Singlet oxygen: $\underline{150}$ or more $---> \underline{25}$ or more Superoxide anion: $\underline{200}$ or more $---> \underline{20}$ or more

Reason: Mistake of description

1. Version 3.02

Date: 21 May 2012

Items: 8. Criteria for judgment (Page 8-9)

Positive (mean of 3 wells)

Singlet oxygen: 25 or more at 200, 100, 50 or 20 μ M, or Superoxide anion: 20 or more at 200, 100, 50 or 20 μ M

Negative (mean of 3 wells)

Singlet oxygen: less than 25 at 200 μM and Superoxide anion: less than 20 at 200 μM

Inconclusive (mean of 3 wells)

The results does not meet the positive or negative criterion.

The final judgment will be estimated on the results of triplicate experiments in each testing facility as follows;

Positive (mean of 3 assays)

Singlet oxygen: 25 or more at 200, 100, 50 or 20 μM, or Superoxide anion: 20 or more at 200, 100, 50 or 20 μM

Negative (mean of 3 assays)

Singlet oxygen: less than 25 at 200 μM and

Superoxide anion: less than 20 at 200 µM and

<u>Inconclusive (mean of 3 wells)</u>

The results does not meet the positive or negative criterion.

Reason: Information on the test concentration was added to the positive and negative criterion. The negative results should be judged from the results at 200 μ M only. The positive results can be judged from the results at any concentration tested. And,

when the test chemical is not judged either "Positive" or "Negative" from the assay results, the assay results should be judged as "Inconclusive". For the final judgment, the same criterion for the 3 assay results should be adopted.